A new proof of Sahlqvist's theorem on modal definability and completeness

1989 ◽  
Vol 54 (3) ◽  
pp. 992-999 ◽  
Author(s):  
G. Sambin ◽  
V. Vaccaro

There are not many global results on modal logics. One of these is the following theorem by Sahlqvist on completeness and correspondence for a wide class of modal formulae (including many well known logics, e.g. D, T, B, S4, K4, S5, …) (see [S]).Sahlqvist's Theorem. Let A be any modal formula which is equivalent to a conjunction of formulae of the form □m(A1 → A2), where m ≥ 0, A2 is positive and A1 is obtained from propositional variables and their negations applying ∧, ∨, ♢, and □ in such a way that no positive occurrence of a variable is in a subformula of the form B1 ∨ B2 or ♢ B1 within the scope of some □. Then A corresponds effectively to a first order formula, and L + A is canonical whenever Lis a canonical logic.A formula A satisfying the above conditions is henceforth called a Sahlqvist formula. Unfortunately, till now, the only complete proof was the original proof of Sahlqvist (a proof of the correspondence half has also been given by van Benthem [vB]). It is so complicated and long that even in an advanced textbook of modal logic [HC] it has not found a place. Here, by considering general frames as topological spaces, an attitude which we developed in [TD], we give a proof of Sahlqvist's theorem simplified to such an extent that one can easily grasp the key idea on which it is based and apply the resulting algorithm to specific modal formulae in a straightforward manner, suitable even for implementation on a personal computer. This key idea also improves on previous preliminary work in the same direction (see [S1], [S2]).

2021 ◽  
Vol 56 ◽  
pp. 57-74
Author(s):  
Tin Perkov ◽  
Luka Mikec

We define a procedure for translating a given first-order formula to an equivalent modal formula, if one exists, by using tableau-based bisimulation invariance test. A previously developed tableau procedure tests bisimulation invariance of a given first-order formula, and therefore tests whether that formula is equivalent to the standard translation of some modal formula. Using a closed tableau as the starting point, we show how an equivalent modal formula can be effectively obtained.


1996 ◽  
Vol 61 (1) ◽  
pp. 1-39 ◽  
Author(s):  
Alberto Zanardo

AbstractIn Ockhamist branching-time logic [Prior 67], formulas are meant to be evaluated on a specified branch, or history, passing through the moment at hand. The linguistic counterpart of the manifoldness of future is a possibility operator which is read as ‘at some branch, or history (passing through the moment at hand)’. Both the bundled-trees semantics [Burgess 79] and the 〈moment, history〉 semantics [Thomason 84] for the possibility operator involve a quantification over sets of moments. The Ockhamist frames are (3-modal) Kripke structures in which this second-order quantification is represented by a first-order quantification. The aim of the present paper is to investigate the notions of modal definability, validity, and axiomatizability concerning 3-modal frames which can be viewed as generalizations of Ockhamist frames.


2019 ◽  
Vol 29 (8) ◽  
pp. 1311-1344 ◽  
Author(s):  
Lauri T Hella ◽  
Miikka S Vilander

Abstract We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between bisimulation invariant first-order logic $\textrm{FO}$ and (basic) modal logic $\textrm{ML}$. We also present a version of the game for the modal $\mu $-calculus $\textrm{L}_\mu $ and show that $\textrm{FO}$ is also non-elementarily more succinct than $\textrm{L}_\mu $.


2014 ◽  
Vol 7 (3) ◽  
pp. 439-454 ◽  
Author(s):  
PHILIP KREMER

AbstractIn the topological semantics for propositional modal logic, S4 is known to be complete for the class of all topological spaces, for the rational line, for Cantor space, and for the real line. In the topological semantics for quantified modal logic, QS4 is known to be complete for the class of all topological spaces, and for the family of subspaces of the irrational line. The main result of the current paper is that QS4 is complete, indeed strongly complete, for the rational line.


2021 ◽  
pp. 14-52
Author(s):  
Cian Dorr ◽  
John Hawthorne ◽  
Juhani Yli-Vakkuri

This chapter presents the system of classical higher-order modal logic which will be employed throughout this book. Nothing more than a passing familiarity with classical first-order logic and standard systems of modal logic is presupposed. We offer some general remarks about the kind of commitment involved in endorsing this logic, and motivate some of its more non-standard features. We also discuss how talk about possible worlds can be represented within the system.


2021 ◽  
pp. 268-311
Author(s):  
Paolo Mancosu ◽  
Sergio Galvan ◽  
Richard Zach

This chapter opens the part of the book that deals with ordinal proof theory. Here the systems of interest are not purely logical ones, but rather formalized versions of mathematical theories, and in particular the first-order version of classical arithmetic built on top of the sequent calculus. Classical arithmetic goes beyond pure logic in that it contains a number of specific axioms for, among other symbols, 0 and the successor function. In particular, it contains the rule of induction, which is the essential rule characterizing the natural numbers. Proving a cut-elimination theorem for this system is hopeless, but something analogous to the cut-elimination theorem can be obtained. Indeed, one can show that every proof of a sequent containing only atomic formulas can be transformed into a proof that only applies the cut rule to atomic formulas. Such proofs, which do not make use of the induction rule and which only concern sequents consisting of atomic formulas, are called simple. It is shown that simple proofs cannot be proofs of the empty sequent, i.e., of a contradiction. The process of transforming the original proof into a simple proof is quite involved and requires the successive elimination, among other things, of “complex” cuts and applications of the rules of induction. The chapter describes in some detail how this transformation works, working through a number of illustrative examples. However, the transformation on its own does not guarantee that the process will eventually terminate in a simple proof.


2019 ◽  
Vol 12 (2) ◽  
pp. 255-270 ◽  
Author(s):  
PAVEL NAUMOV ◽  
JIA TAO

AbstractModal logic S5 is commonly viewed as an epistemic logic that captures the most basic properties of knowledge. Kripke proved a completeness theorem for the first-order modal logic S5 with respect to a possible worlds semantics. A multiagent version of the propositional S5 as well as a version of the propositional S5 that describes properties of distributed knowledge in multiagent systems has also been previously studied. This article proposes a version of S5-like epistemic logic of distributed knowledge with quantifiers ranging over the set of agents, and proves its soundness and completeness with respect to a Kripke semantics.


Sign in / Sign up

Export Citation Format

Share Document