Generalized reduction theorems for model-theoretic analogs of the class of coanalytic sets

1993 ◽  
Vol 58 (1) ◽  
pp. 81-98
Author(s):  
Shaughan Lavine

AbstractLet be an admissible set. A sentence of the form is a sentence if φ ∈ (φ is ∨ Φ where Φ is an -r.e. set of sentences from ). A sentence of the form is an , sentence if φ is a sentence. A class of structures is, for example, a ∀1 class if it is the class of models of a ∀1() sentence. Thus ∀1() is a class of classes of structures, and so forth.Let i, be the structure 〈i, <〉, for i > 0. Let Γ be a class of classes of structures. We say that a sequence J1, …, Ji,…, i < ω, of classes of structures is a Γ sequence if Ji ∈ Γ, i < ω, and there is I ∈ Γ such that ∈ Ji, if and only if [],i, where [,] is the disjoint sum. A class Γ of classes of structures has the easy uniformization property if for every Γ sequence J1,…, Ji,…, i < ω, there is a Γ sequence J′t, …, J′i, …, i < ω, such that J′i ⊆ Ji, i < ω, ⋃J′i = ⋃Ji, and the J′i are pairwise disjoint. The easy uniformization property is an effective version of Kuratowski's generalized reduction property that is closely related to Moschovakis's (topological) easy uniformization property.We show over countable structures that ∀1() and ∃2() have the easy uniformization property if is a countable admissible set with an infinite member, that and have the easy uniformization property if α is countable, admissible, and not weakly stable, and that and have the easy uniformization properly. The results proved are more general. The result for answers a question of Vaught(1980).

1991 ◽  
Vol 56 (4) ◽  
pp. 1290-1316
Author(s):  
Shaughan Lavine

AbstractIt is well known that, in the terminology of Moschovakis, Descriptive set theory (1980), every adequate normed pointclass closed under ∀ω has an effective version of the generalized reduction property (GRP) called the easy uniformization property (EUP). We prove a dual result: every adequate normed pointclass closed under ∃ω has the EUP. Moschovakis was concerned with the descriptive set theory of subsets of Polish topological spaces. We set up a general framework for parts of descriptive set theory and prove results that have as special cases not only the just-mentioned topological results, but also corresponding results concerning the descriptive set theory of classes of classes of structures.Vaught (1973) asked whether the class of cPCδ classes of countable structures has the GRP. It does. A cPC(A) class is the class of all models of a sentence of the form , where ϕ is a sentence of ℒ∞ω that is in A and is a set of relation symbols that is in A. Vaught also asked whether there is any primitive recursively closed set A such that some effective version of the GRP holds for the class of cPC(A) classes of countable structures. There is: The class of cPC(A) classes of countable structures has the EUP if ω ∈ A and A is countable and primitive recursively closed. Those results and some extensions are obtained by first showing that the relevant classes of classes of structures, which Vaught showed normed, are in a suitable sense adequate and closed under ∃ω, and then applying the dual easy uniformization theorem.


1972 ◽  
Vol 37 (4) ◽  
pp. 677-682 ◽  
Author(s):  
George Metakides

Let α be a limit ordinal with the property that any “recursive” function whose domain is a proper initial segment of α has its range bounded by α. α is then called admissible (in a sense to be made precise later) and a recursion theory can be developed on it (α-recursion theory) by providing the generalized notions of α-recursively enumerable, α-recursive and α-finite. Takeuti [12] was the first to study recursive functions of ordinals, the subject owing its further development to Kripke [7], Platek [8], Kreisel [6], and Sacks [9].Infinitary logic on the other hand (i.e., the study of languages which allow expressions of infinite length) was quite extensively studied by Scott [11], Tarski, Kreisel, Karp [5] and others. Kreisel suggested in the late '50's that these languages (even which allows countable expressions but only finite quantification) were too large and that one should only allow expressions which are, in some generalized sense, finite. This made the application of generalized recursion theory to the logic of infinitary languages appear natural. In 1967 Barwise [1] was the first to present a complete formalization of the restriction of to an admissible fragment (A a countable admissible set) and to prove that completeness and compactness hold for it. [2] is an excellent reference for a detailed exposition of admissible languages.


1985 ◽  
Vol 24 (5) ◽  
pp. 327-351 ◽  
Author(s):  
Yu. L. Ershov
Keyword(s):  

1973 ◽  
Vol 38 (3) ◽  
pp. 460-470 ◽  
Author(s):  
John Gregory

Let A be a countable admissible set (as defined in [1], [3]). The language LA consists of all infinitary finite-quantifier formulas (identified with sets, as in [1]) that are elements of A. Notationally, LA = A ∩ Lω1ω. Then LA is a countable subset of Lω1ω, the language of all infinitary finite-quantifier formulas with all conjunctions countable. The set is the set of Lω1ω sentences defined in 2.2 below. The following theorem characterizes those A-Σ1 sets Φ of LA sentences that have uncountable models.Main Theorem (3.1.). If Φ is an A-Σ1set of LA sentences, then the following are equivalent:(a) Φ has an uncountable model,(b) Φ has a model with a proper LA-elementary extension,(c) for every , ⋀Φ → C is not valid.This theorem was announced in [2] and is proved in §§3, 4, 5. Makkai's earlier [4, Theorem 1] implies that, if Φ determines countable structure up to Lω1ω-elementary equivalence, then (a) is equivalent to (c′) for all , ⋀Φ → C is not valid.The requirement in 3.1 that Φ is A-Σ1 is essential when the set ω of all natural numbers is an element of A. For by the example of [2], then there is a set Φ LA sentences such that (b) holds and (a) fails; it is easier to show that, if ω ϵ A, there is a set Φ of LA sentences such that (c) holds and (b) fails.


2013 ◽  
Vol 09 (08) ◽  
pp. 2091-2128 ◽  
Author(s):  
SZILÁRD GY. RÉVÉSZ ◽  
ANNE de ROTON

We consider the classical Wiener–Ikehara Tauberian theorem, with a generalized condition of slow decrease and some additional poles on the boundary of convergence of the Laplace transform. In this generality, we prove the otherwise known asymptotic evaluation of the transformed function, when the usual conditions of the Wiener–Ikehara theorem hold. However, our version also provides an effective error term, not known thus far in this generality. The crux of the proof is a proper, asymptotic variation of the lemmas of Ganelius and Tenenbaum, also constructed for the sake of an effective version of the Wiener–Ikehara theorem.


2010 ◽  
Vol 19 (5-6) ◽  
pp. 791-817 ◽  
Author(s):  
CATHERINE GREENHILL ◽  
SVANTE JANSON ◽  
ANDRZEJ RUCIŃSKI

Let G be a fixed connected multigraph with no loops. A random n-lift of G is obtained by replacing each vertex of G by a set of n vertices (where these sets are pairwise disjoint) and replacing each edge by a randomly chosen perfect matching between the n-sets corresponding to the endpoints of the edge. Let XG be the number of perfect matchings in a random lift of G. We study the distribution of XG in the limit as n tends to infinity, using the small subgraph conditioning method.We present several results including an asymptotic formula for the expectation of XG when G is d-regular, d ≥ 3. The interaction of perfect matchings with short cycles in random lifts of regular multigraphs is also analysed. Partial calculations are performed for the second moment of XG, with full details given for two example multigraphs, including the complete graph K4.To assist in our calculations we provide a theorem for estimating a summation over multiple dimensions using Laplace's method. This result is phrased as a summation over lattice points, and may prove useful in future applications.


2019 ◽  
Vol 7 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Marton Sipos ◽  
Janus Heide ◽  
Daniel E. Lucani ◽  
Morten V. Pedersen ◽  
Frank H.P. Fitzek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document