Chromosome Behaviour in F 1 Hybrids between Solanum demissum and Three Diploid Species

1959 ◽  
Vol 86 (1) ◽  
pp. 31
Author(s):  
Ruth I. Walker

1972 ◽  
Vol 14 (2) ◽  
pp. 347-351 ◽  
Author(s):  
M. H. El-Lakany

Relative DNA content and chromosome number and behaviour were studied in Manitoba wild roses. The hexaploid, Rosa acicularis, contained the largest amount of DNA, about three times that of the diploid, R. woodsii. Another diploid species, R. blanda, contained less DNA than R. woodsii. One specimen, identified as R. blanda with some introgression from R. woodsii, had the same amount of DNA as the latter species. R. × dulcissima, a hybrid between R. blanda and R. woodsii, had DNA contents similar to R. woodsii. The origin of a tetraploid, with DNA contents intermediate between diploid and hexaploid species, and 14 bivalents in diakinesis, was suggested to be hybridization between R. acicularis and a diploid rose. Chromosome behaviour in meiosis and DNA content were used in a discussion of interspecific relationships.



2020 ◽  
Vol 45 (1) ◽  
pp. 75-84
Author(s):  
Llorenç Sáez ◽  
Javier López-Alvarado ◽  
Pere Fraga ◽  
Regina Berjano ◽  
M. Ángeles Ortiz ◽  
...  

Abstract—Two new diploid species, Aira minoricensis and Aira hercynica, are described and illustrated, along with chromosome counts, risk assessment, distribution and habitat, phenology, and comparisons with morphologically similar species. A comparative table and a key for the species of Aira for the Iberian Peninsula and the Balearic Islands are provided to assist in the identification of these overlooked species, and their relationships to other taxa are discussed.



2020 ◽  
Vol 45 (4) ◽  
pp. 767-778
Author(s):  
Eranga Wettewa ◽  
Nick Bailey ◽  
Lisa E. Wallace

Abstract—Species complexes present considerable problems for a working taxonomy due to the presence of intraspecific variation, hybridization, polyploidy, and phenotypic plasticity. Understanding evolutionary patterns using molecular markers can allow for a more thorough assessment of evolutionary lineages than traditional morphological markers. In this study, we evaluated genetic diversity and phylogenetic patterns among taxa of the Platanthera hyperborea (Orchidaceae) complex, which includes diploid (Platanthera aquilonis) and polyploid (Platanthera hyperborea, P. huronensis, and P. convallariifolia) taxa spanning North America, Greenland, Iceland, and Asia. We found that three floral morphological characters overlap among the polyploid taxa, but the diploid species has smaller flowers. DNA sequence variation in a plastid (rpL16 intron) and a nuclear (ITS) marker indicated that at least three diploid species have contributed to the genomes of the polyploid taxa, suggesting all are of allopolyploid origin. Platanthera convallariifolia is most like P. dilatata and P. stricta, whereas P. huronensis and P. hyperborea appear to have originated from crosses of P. dilatata and P. aquilonis. Platanthera huronensis, which is found across North America, has multiple origins and reciprocal maternal parentage from the diploid species. By contrast, P. hyperborea, restricted to Greenland and Iceland, appears to have originated from a small founding population of hybrids in which P. dilatata was the maternal parent. Geographic structure was found among polyploid forms in North America. The area of Manitoba, Canada appears to be a contact zone among geographically diverse forms from eastern and western North America. Given the geographic and genetic variation found, we recommend continued recognition of four green-flowered species within this complex, but caution that there may be additional cryptic taxa within North America.





Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 706-713 ◽  
Author(s):  
Concha Linares ◽  
Antonio Serna ◽  
Araceli Fominaya

A repetitive sequence, pAs17, was isolated from Avena strigosa (As genome) and characterized. The insert was 646 bp in length and showed 54% AT content. Databank searches revealed its high homology to the long terminal repeat (LTR) sequences of the specific family of Ty1-copia retrotransposons represented by WIS2-1A and Bare. It was also found to be 70% identical to the LTR domain of the WIS2-1A retroelement of wheat and 67% identical to the Bare-1 retroelement of barley. Southern hybridizations of pAs17 to diploid (A or C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) oat species revealed that it was absent in the C diploid species. Slot-blot analysis suggested that both diploid and tetraploid oat species contained 1.3 × 104 copies, indicating that they are a component of the A-genome chromosomes. The hexaploid species contained 2.4 × 104 copies, indicating that they are a component of both A- and D-genome chromosomes. This was confirmed by fluorescent in situ hybridization analyses using pAs17, two ribosomal sequences, and a C-genome specific sequence as probes. Further, the chromosomes involved in three C-A and three C-D intergenomic translocations in Avena murphyi (AC genomes) and Avena sativa cv. Extra Klock (ACD genomes), respectively, were identified. Based on its physical distribution and Southern hybridization patterns, a parental retrotransposon represented by pAs17 appears to have been active at least once during the evolution of the A genome in species of the Avena genus.Key words: chromosomal organization, in situ hybridization, intergenomic translocations, LTR sequence, oats.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liuyang Fu ◽  
Qian Wang ◽  
Lina Li ◽  
Tao Lang ◽  
Junjia Guo ◽  
...  

Abstract Background Chromosomal variants play important roles in crop breeding and genetic research. The development of single-stranded oligonucleotide (oligo) probes simplifies the process of fluorescence in situ hybridization (FISH) and facilitates chromosomal identification in many species. Genome sequencing provides rich resources for the development of oligo probes. However, little progress has been made in peanut due to the lack of efficient chromosomal markers. Until now, the identification of chromosomal variants in peanut has remained a challenge. Results A total of 114 new oligo probes were developed based on the genome-wide tandem repeats (TRs) identified from the reference sequences of the peanut variety Tifrunner (AABB, 2n = 4x = 40) and the diploid species Arachis ipaensis (BB, 2n = 2x = 20). These oligo probes were classified into 28 types based on their positions and overlapping signals in chromosomes. For each type, a representative oligo was selected and modified with green fluorescein 6-carboxyfluorescein (FAM) or red fluorescein 6-carboxytetramethylrhodamine (TAMRA). Two cocktails, Multiplex #3 and Multiplex #4, were developed by pooling the fluorophore conjugated probes. Multiplex #3 included FAM-modified oligo TIF-439, oligo TIF-185-1, oligo TIF-134-3 and oligo TIF-165. Multiplex #4 included TAMRA-modified oligo Ipa-1162, oligo Ipa-1137, oligo DP-1 and oligo DP-5. Each cocktail enabled the establishment of a genome map-based karyotype after sequential FISH/genomic in situ hybridization (GISH) and in silico mapping. Furthermore, we identified 14 chromosomal variants of the peanut induced by radiation exposure. A total of 28 representative probes were further chromosomally mapped onto the new karyotype. Among the probes, eight were mapped in the secondary constrictions, intercalary and terminal regions; four were B genome-specific; one was chromosome-specific; and the remaining 15 were extensively mapped in the pericentric regions of the chromosomes. Conclusions The development of new oligo probes provides an effective set of tools which can be used to distinguish the various chromosomes of the peanut. Physical mapping by FISH reveals the genomic organization of repetitive oligos in peanut chromosomes. A genome map-based karyotype was established and used for the identification of chromosome variations in peanut following comparisons with their reference sequence positions.



2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jianke Du ◽  
Chunfeng Ge ◽  
Tingting Li ◽  
Sanhong Wang ◽  
Zhihong Gao ◽  
...  

AbstractStrawberry (Fragaria spp.) is a member of the Rosoideae subfamily in the family Rosaceae. The self-incompatibility (SI) of some diploid species is a key agronomic trait that acts as a basic pollination barrier; however, the genetic mechanism underlying SI control in strawberry remains unclear. Two candidate S-RNases (Sa- and Sb-RNase) identified in the transcriptome of the styles of the self-incompatible Fragaria viridis 42 were confirmed to be SI determinants at the S locus following genotype identification and intraspecific hybridization using selfing progenies. Whole-genome collinearity and RNase T2 family analysis revealed that only an S locus exists in Fragaria; however, none of the compatible species contained S-RNase. Although the results of interspecific hybridization experiments showed that F. viridis (SI) styles could accept pollen from F. mandshurica (self-compatible), the reciprocal cross was incompatible. Sa and Sb-RNase contain large introns, and their noncoding sequences (promotors and introns) can be transcribed into long noncoding RNAs (lncRNAs). Overall, the genus Fragaria exhibits S-RNase-based gametophytic SI, and S-RNase loss occurs at the S locus of compatible germplasms. In addition, a type of SI-independent unilateral incompatibility exists between compatible and incompatible Fragaria species. Furthermore, the large introns and neighboring lncRNAs in S-RNase in Fragaria could offer clues about S-RNase expression strategies.



Genetics ◽  
1962 ◽  
Vol 47 (10) ◽  
pp. 1321-1333 ◽  
Author(s):  
Paul Grun ◽  
Mary Aubertin ◽  
Anne Radlow


PhytoKeys ◽  
2019 ◽  
Vol 115 ◽  
pp. 51-57 ◽  
Author(s):  
Jordan R. Brock ◽  
Terezie Mandáková ◽  
Martin A. Lysak ◽  
Ihsan A. Al-Shehbaz

Camelinaneglecta is described as a new diploid species and its relationship to the other diploids of the genus and to the somewhat superficially similar tetraploid C.rumelica and hexaploid C.microcarpa, are discussed. SEM of seed and stem trichomes of the new species are presented.



Sign in / Sign up

Export Citation Format

Share Document