◇ at Mahlo cardinals

2000 ◽  
Vol 65 (4) ◽  
pp. 1813-1822 ◽  
Author(s):  
Martin Zeman

AbstractGiven a Mahlo cardinal k and a regular ε such that ω1 < ε < k we show that ◇k(cf = ε) holds in V provided that there are only non-stationarily many β < k with o(β) ≥ ε in K.

1989 ◽  
Vol 54 (2) ◽  
pp. 467-473 ◽  
Author(s):  
Qi Feng

AbstractWe show that a cardinal κ is a (strongly) Mahlo cardinal if and only if there exists a nontrivial κ-complete κ-normal ideal on κ. Also we show that if κ is Mahlo and λ ≧ κ and λ<κ = λ then there is a nontrivial κ-complete κ-normal fine ideal on Pκ(λ). If κ is the successor of a cardinal, we consider weak κ-normality and prove that if κ = μ+ and μ is a regular cardinal then (1) μ< μ = μ if and only if there is a nontrivial κ-complete weakly κ-normal ideal on κ, and (2) if μ< μ = μ < λ<μ = λ then there is a nontrivial κ-complete weakly κ-normal fine ideal on Pκ(λ).


2001 ◽  
Vol 66 (4) ◽  
pp. 1865-1883 ◽  
Author(s):  
Chaz Schlindwein

One of the main goals in the theory of forcing iteration is to formulate preservation theorems for not collapsing ω1 which are as general as possible. This line leads from c.c.c. forcings using finite support iterations to Axiom A forcings and proper forcings using countable support iterations to semi-proper forcings using revised countable support iterations, and more recently, in work of Shelah, to yet more general classes of posets. In this paper we concentrate on a special case of the very general iteration theorem of Shelah from [5, chapter XV]. The class of posets handled by this theorem includes all semi-proper posets and also includes, among others, Namba forcing.In [5, chapter XV] Shelah shows that, roughly, revised countable support forcing iterations in which the constituent posets are either semi-proper or Namba forcing or P[W] (the forcing for collapsing a stationary co-stationary subset ofwith countable conditions) do not collapse ℵ1. The iteration must contain sufficiently many cardinal collapses, for example, Levy collapses. The most easily quotable combinatorial application is the consistency (relative to a Mahlo cardinal) of ZFC + CH fails + whenever A ∪ B = ω2 then one of A or B contains an uncountable sequentially closed subset. The iteration Shelah uses to construct this model is built using P[W] to “attack” potential counterexamples, Levy collapses to ensure that the cardinals collapsed by the various P[W]'s are sufficiently well separated, and Cohen forcings to ensure the failure of CH in the final model.In this paper we give details of the iteration theorem, but we do not address the combinatorial applications such as the one quoted above.These theorems from [5, chapter XV] are closely related to earlier work of Shelah [5, chapter XI], which dealt with iterated Namba and P[W] without allowing arbitrary semi-proper forcings to be included in the iteration. By allowing the inclusion of semi-proper forcings, [5, chapter XV] generalizes the conjunction of [5, Theorem XI.3.6] with [5, Conclusion XI.6.7].


2017 ◽  
Vol 63 (3-4) ◽  
pp. 256-264
Author(s):  
Erin Kathryn Carmody
Keyword(s):  

1983 ◽  
Vol 48 (4) ◽  
pp. 1046-1052 ◽  
Author(s):  
Dan Velleman

It is well known that many statements provable from combinatorial principles true in the constructible universe L can also be shown to be consistent with ZFC by forcing. Recent work by Shelah and Stanley [4] and the author [5] has clarified the relationship between the axiom of constructibility and forcing by providing Martin's Axiom-type forcing axioms equivalent to ◊ and the existence of morasses. In this paper we continue this line of research by providing a forcing axiom equivalent to □κ. The forcing axiom generalizes easily to inaccessible, non-Mahlo cardinals, and provides the motivation for a corresponding generalization of □κ.In order to state our forcing axiom, we will need to define a strategic closure condition for partial orders. Suppose P = 〈P, ≤〉 is a partial order. For each ordinal α we will consider a game played by two players, Good and Bad. The players choose, in order, the terms in a descending sequence of conditions 〈pβ∣β < α〉 Good chooses all terms pβ for limit β, and Bad chooses all the others. Bad wins if for some limit β<α, Good is unable to move at stage β because 〈pγ∣γ < β〉 has no lower bound. Otherwise, Good wins. Of course, we will be rooting for Good.


1989 ◽  
Vol 54 (2) ◽  
pp. 540-552 ◽  
Author(s):  
Akihiro Kanamori

Several rather concrete propositions about Borel measurable functions of several variables on the Hilbert cube (countable sequences of reals in the unit interval) were formulated by Harvey Friedman [F1] and correlated with strong set-theoretic hypotheses. Most notably, he established that a “Borel diagonalization” proposition P is equivalent to: for any a ⊆ co and n ⊆ ω there is an ω-model of ZFC + ∃κ(κ is n-Mahlo) containing a. In later work (see the expository Stanley [St] and Friedman [F2]), Friedman was to carry his investigations further into propositions about spaces of groups and the like, and finite propositions. He discovered and analyzed mathematical propositions which turned out to have remarkably strong consistency strength in terms of large cardinal hypotheses in set theory.In this paper, we refine and extend Friedman's work on the Borel diagonalization proposition P. First, we provide more combinatorics about regressive partitions and n-Mahlo cardinals and extend the approach to the context of the Erdös cardinals In passing, a combinatorial proof of a well-known result of Silver about these cardinals is given. Incorporating this work and sharpening Friedman's proof, we then show that there is a level-by-level analysis of P which provides for each n ⊆ ω a proposition almost equivalent to: for any a ⊆ co there is an ω-model of ZFC + ∃κ(κ is n-Mahlo) containing a. Finally, we use the combinatorics to bracket a natural generalization Sω of P between two large cardinal hypotheses.


2001 ◽  
Vol 66 (4) ◽  
pp. 1766-1782 ◽  
Author(s):  
Ali Enayat

Abstract.A model = (M. E, …) of Zermelo-Fraenkel set theory ZF is said to be 0-like. where E interprets ∈ and θ is an uncountable cardinal, if ∣M∣ = θ but ∣{b ∈ M: bEa}∣ < 0 for each a ∈ M, An immediate corollary of the classical theorem of Keisler and Morley on elementary end extensions of models of set theory is that every consistent extension of ZF has an ℵ1-like model. Coupled with Chang's two cardinal theorem this implies that if θ is a regular cardinal 0 such that 2<0 = 0 then every consistent extension of ZF also has a 0+-like model. In particular, in the presence of the continuum hypothesis every consistent extension of ZF has an ℵ2-like model. Here we prove:Theorem A. If 0 has the tree property then the following are equivalent for any completion T of ZFC:(i) T has a 0-like model.(ii) Ф ⊆ T. where Ф is the recursive set of axioms {∃κ (κ is n-Mahlo and “Vκis a Σn-elementary submodel of the universe”): n ∈ ω}.(iii) T has a λ-like model for every uncountable cardinal λ.Theorem B. The following are equiconsistent over ZFC:(i) “There exists an ω-Mahlo cardinal”.(ii) “For every finite language , all ℵ2-like models of ZFC() satisfy the schemeФ().


2002 ◽  
Vol 67 (3) ◽  
pp. 924-932 ◽  
Author(s):  
SY D. Friedman

In this paper we examine the cardinal structure of inner models that satisfy GCH but do not contain 0#. We show, assuming that 0# exists, that such models necessarily contain Mahlo cardinals of high order, but without further assumptions need not contain a cardinal κ which is κ-Mahlo. The principal tools are the Covering Theorem for L and the technique of reverse Easton iteration.Let I denote the class of Silver indiscernibles for L and 〈iα ∣ α ϵ ORD〉 its increasing enumeration. Also fix an inner model M of GCH not containing 0# and let ωα denote the ωα of the model M[0#], the least inner model containing M as a submodel and 0# as an element.


1989 ◽  
Vol 54 (1) ◽  
pp. 226-233
Author(s):  
Thomas Jech

If ℱ is a normal filter on a regular uncountable cardinal κ, let ║f║ be the ℱ-norm of an ordinal function f. We introduce the class of positive ordinal operations and prove that if F is a positive operation then ║F(f)║ ≥ F(║f║). For each η < κ+ let fη be the canonical ηth function. We show that if F is a ∑ operation then F(fη) = fF(η).As an application we show that if κ is greatly Mahlo then there are normal filters on κ of order greater than κ+.


Sign in / Sign up

Export Citation Format

Share Document