The Caribou/Wild Reindeer as a Human Resource

1972 ◽  
Vol 37 (3) ◽  
pp. 339-368 ◽  
Author(s):  
Ernest S. Burch

AbstractThe caribou/wild reindeer (Rangifer tarandus) has been a major resource for many human populations in northern North America and Eurasia for tens of thousands of years. The species is generally represented by prehistorians as providing an ample, easily exploited, and highly reliable resource base for humans. In this paper a number of specific assumptions leading to this view are examined in the light of new data on North American caribou and caribou-hunting Eskimo groups. The conventional picture is found to be largely untenable.

Rangifer ◽  
1986 ◽  
Vol 6 (2) ◽  
pp. 19 ◽  
Author(s):  
T. Mark Williams ◽  
Douglas C. Heard

We recognized 184 herds of wild Rangifer tarandus, 102 in North America, 55 in Europe, 24 in Asia and 3 on South Georgia. Seventy-five percent of the world population of 3.3 to 3.9 million animals occurred in nine herds. All seven herds larger than 120 000 animals were censused by some means of aerial photography and all were increasing. Herds between 20 000 and 120 000 were most often censused using aerial strip transect methods, while total counts were usually employed to census smaller herds. The most pronounced changes in Rangifer herd status between 1979 and 1985 occurred in North America where population "estimates for five herds increased by a total of about one million animals. Part of this increase is attributable to a change from visual to photographic surveys. Eighty-three percent of North American, 88% of European, and 68% of Asian herds were stable or increasing.


2020 ◽  
Vol 117 (49) ◽  
pp. 31417-31426 ◽  
Author(s):  
Romolo Nonno ◽  
Michele A. Di Bari ◽  
Laura Pirisinu ◽  
Claudia D’Agostino ◽  
Ilaria Vanni ◽  
...  

Chronic wasting disease (CWD) is a relentless epidemic disorder caused by infectious prions that threatens the survival of cervid populations and raises increasing public health concerns in North America. In Europe, CWD was detected for the first time in wild Norwegian reindeer (Rangifer tarandus) and moose (Alces alces) in 2016. In this study, we aimed at comparing the strain properties of CWD prions derived from different cervid species in Norway and North America. Using a classical strain typing approach involving transmission and adaptation to bank voles (Myodes glareolus), we found that prions causing CWD in Norway induced incubation times, neuropathology, regional deposition of misfolded prion protein aggregates in the brain, and size of their protease-resistant core, different from those that characterize North American CWD. These findings show that CWD prion strains affecting Norwegian cervids are distinct from those found in North America, implying that the highly contagious North American CWD prions are not the proximate cause of the newly discovered Norwegian CWD cases. In addition, Norwegian CWD isolates showed an unexpected strain variability, with reindeer and moose being caused by different CWD strains. Our findings shed light on the origin of emergent European CWD, have significant implications for understanding the nature and the ecology of CWD in Europe, and highlight the need to assess the zoonotic potential of the new CWD strains detected in Europe.


Paleobiology ◽  
2017 ◽  
Vol 43 (4) ◽  
pp. 642-655 ◽  
Author(s):  
Meaghan M. Emery-Wetherell ◽  
Brianna K. McHorse ◽  
Edward Byrd Davis

AbstractThe late Pleistocene megafaunal extinctions may have been the first extinctions directly related to human activity, but in North America the close temporal proximity of human arrival and the Younger Dryas climate event has hindered efforts to identify the ultimate extinction cause. Previous work evaluating the roles of climate change and human activity in the North American megafaunal extinction has been stymied by a reliance on geographic binning, yielding contradictory results among researchers. We used a fine-scale geospatial approach in combination with 95 megafaunal last-appearance and 75 human first-appearance radiocarbon dates to evaluate the North American megafaunal extinction. We used kriging to create interpolated first- and last-appearance surfaces from calibrated radiocarbon dates in combination with their geographic autocorrelation. We found substantial evidence for overlap between megafaunal and human populations in many but not all areas, in some cases exceeding 3000 years of predicted overlap. We also found that overlap was highly regional: megafauna had last appearances in Alaska before humans first appeared, but did not have last appearances in the Great Lakes region until several thousand years after the first recorded human appearances. Overlap in the Great Lakes region exceeds uncertainty in radiocarbon measurements or methodological uncertainty and would be even greater with sampling-derived confidence intervals. The kriged maps of last megafaunal occurrence are consistent with climate as a primary driver in some areas, but we cannot eliminate human influence from all regions. The late Pleistocene megafaunal extinction was highly variable in timing and duration of human overlap across the continent, and future analyses should take these regional trends into account.


2015 ◽  
Vol 112 (39) ◽  
pp. 12127-12132 ◽  
Author(s):  
Michelle A. Chaput ◽  
Björn Kriesche ◽  
Matthew Betts ◽  
Andrew Martindale ◽  
Rafal Kulik ◽  
...  

As the Cordilleran and Laurentide Ice Sheets retreated, North America was colonized by human populations; however, the spatial patterns of subsequent population growth are unclear. Temporal frequency distributions of aggregated radiocarbon (14C) dates are used as a proxy of population size and can be used to track this expansion. The Canadian Archaeological Radiocarbon Database contains more than 35,000 14C dates and is used in this study to map the spatiotemporal demographic changes of Holocene populations in North America at a continental scale for the past 13,000 y. We use the kernel method, which converts the spatial distribution of 14C dates into estimates of population density at 500-y intervals. The resulting maps reveal temporally distinct, dynamic patterns associated with paleodemographic trends that correspond well to genetic, archaeological, and ethnohistoric evidence of human occupation. These results have implications for hypothesizing and testing migration routes into and across North America as well as the relative influence of North American populations on the evolution of the North American ecosystem.


2021 ◽  
Author(s):  
Mathew Stewart ◽  
Christopher Carleton ◽  
Huw Groucutt

<p>The late Quaternary saw the extinction of a great number of the world’s megafauna (those animals >44 kg), an event unprecedented in 65 million-years of mammalian evolution. Extinctions were notably severe in North America where 37 genera (~80%) of megafauna disappeared by around the late Pleistocene/Holocene boundary (~11.7 thousand-years-ago, or ka). Scholars have typically attributed these extinctions to overhunting by rapidly expanding human populations (i.e., overkill), climate change, or some combination of the two. Testing human- and climate-driven extinctions hypotheses in North America, however, has proven difficult given the apparent concurrency of human arrival in the Americas—more specifically, the emergence of Clovis culture (~13.2–12.9 ka)—and terminal Pleistocene climate changes such as the abrupt warming of the Bølling-Allerød interstadial (B-A; ~14.7–12.9 ka) or near-glacial conditions of the Younger-Dryas stadial (YD; 12.9–11.7 ka). Testing these hypotheses will, therefore, require the analysis of through-time relationships between climate change and megafauna and human population dynamics. To do so, many researchers have used summed probability density functions (SPDFs) as a proxy for through-time fluctuations in human and megafauna population sizes. SPDFs, however, conflate process variation with the chronological uncertainty inherent in radiocarbon dates. Recently, a new Bayesian regression technique was developed that overcomes this problem—Radiocarbon-dated Event-Count (REC) modelling. Using the largest available dataset of megafauna and human radiocarbon dates, we employed REC models to test whether declines in North American megafauna species could be best explained by climate change (temperature), increases in human population densities, or both. On the one hand, we reasoned that if human overhunting drove megafauna extinctions, there would be a negative correlation between human and megafauna population densities. On the other hand, if climate change drove megafauna extinctions, there would be a correlation between our temperature proxy (i.e., the North Greenland Ice Core Project [NGRIP] δ<sup>18</sup>O record) and megafauna population densities. We found no correlation between our human and megafauna population proxies and, therefore, no support for simple models of overkill. While our findings do not preclude humans from having had an impact—for example, by interrupting megafauna subpopulation connectivity or performing a coup de grâce on already impoverished megafauna—they do suggest that growing populations of “big-game” hunters were not the primary driving force behind megafauna extinctions. We did, however, consistently find a significant, positive correlation between temperature and megafauna population densities. Put simply, decreases in temperature correlated with declines in North American megafauna. The timing of megafauna population declines and extinctions suggest that the unique conditions of the YD—i.e., abrupt cooling, increased seasonality and CO<sub>2</sub>, and major vegetation changes—played a key role in the North American megafauna extinction event.</p>


2015 ◽  
Vol 6 (1) ◽  
pp. 183-188 ◽  
Author(s):  
Nicholas C. Kawa ◽  
Bradley Painter ◽  
Cailín E. Murray

Living trees historically modified by human populations, oftentimes referred to as “culturally modified trees” (CMTs), are found throughout the North American landscape. In eastern North America specifically, indigenous populations bent thousands of trees to mark trails, and some of these still exist in the region today. In this article, we present a synthesis of current knowledge on trail trees, including their speculated functions, formation, and selection. We also examine the theoretical implications of these living artifacts (or vivifacts) and how they may open new avenues for investigation by archaeologists, environmental historians, and ethnobiologists. To conclude, we make a call for expanded public recognition and documentation of trail trees, discussing the need for their incorporation into forest and park management plans.


2002 ◽  
Vol 80 (11) ◽  
pp. 1151-1159 ◽  
Author(s):  
M Dusabenyagasani ◽  
G Laflamme ◽  
R C Hamelin

We detected nucleotide polymorphisms within the genus Gremmeniella in DNA sequences of β-tubulin, glyceraldehyde phosphate dehydrogenase, and mitochondrial small subunit rRNA (mtSSU rRNA) genes. A group-I intron was present in strains originating from fir (Abies spp.) in the mtSSU rRNA locus. This intron in the mtSSU rRNA locus of strains isolated from Abies sachalinensis (Fridr. Schmidt) M.T. Mast in Asia was also found in strains isolated from Abies balsamea (L.) Mill. in North America. Phylogenetic analyses yielded trees that grouped strains by host of origin with strong branch support. Asian strains of Gremmeniella abietina (Lagerberg) Morelet var. abietina isolated from fir (A. sachalinensis) were more closely related to G. abietina var. balsamea from North America, which is found on spruce (Picea spp.) and balsam fir, and European and North American races of G. abietina var. abietina from pines (Pinus spp.) were distantly related. Likewise, North American isolates of Gremmeniella laricina (Ettinger) O. Petrini, L.E. Petrini, G. Laflamme, & G.B. Ouellette, a pathogen of larch, was more closely related to G. laricina from Europe than to G. abietina var. abietina from North America. These data suggest that host specialization might have been the leading evolutionary force shaping Gremmeniella spp., with geographic separation acting as a secondary factor.Key words: Gremmeniella, geographic separation, host specialization, mitochondrial rRNA, nuclear genes.


Sign in / Sign up

Export Citation Format

Share Document