Burgers' equation by non-local shot noise data

1994 ◽  
Vol 31 (A) ◽  
pp. 351-362 ◽  
Author(s):  
Donatas Surgailis ◽  
Wojbor A. Woyczynski

We study the scaling limit of random fields which are solutions of a non-linear partial differential equation, known as the Burgers equation, under stochastic initial conditions. These are assumed to be of a non-local shot noise type and driven by a Cox process. Previous work by Bulinskii and Molchanov (1991), Surgailis and Woyczynski (1993a), and Funaki et al. (1994) concentrated on the case of local shot noise data which permitted use of techniques from the theory of random fields with finite range dependence. Those are not available for the non-local case being considered in this paper.Burgers' equation is known to describe various physical phenomena such as non-linear and shock waves, distribution of self-gravitating matter in the universe, and other flow satisfying conservation laws (see e.g. Woyczynski (1993)).

1994 ◽  
Vol 31 (A) ◽  
pp. 351-362 ◽  
Author(s):  
Donatas Surgailis ◽  
Wojbor A. Woyczynski

We study the scaling limit of random fields which are solutions of a non-linear partial differential equation, known as the Burgers equation, under stochastic initial conditions. These are assumed to be of a non-local shot noise type and driven by a Cox process. Previous work by Bulinskii and Molchanov (1991), Surgailis and Woyczynski (1993a), and Funaki et al. (1994) concentrated on the case of local shot noise data which permitted use of techniques from the theory of random fields with finite range dependence. Those are not available for the non-local case being considered in this paper. Burgers' equation is known to describe various physical phenomena such as non-linear and shock waves, distribution of self-gravitating matter in the universe, and other flow satisfying conservation laws (see e.g. Woyczynski (1993)).


Author(s):  
CRAIG GIN ◽  
BETHANY LUSCH ◽  
STEVEN L. BRUNTON ◽  
J. NATHAN KUTZ

We develop a deep autoencoder architecture that can be used to find a coordinate transformation which turns a non-linear partial differential equation (PDE) into a linear PDE. Our architecture is motivated by the linearising transformations provided by the Cole–Hopf transform for Burgers’ equation and the inverse scattering transform for completely integrable PDEs. By leveraging a residual network architecture, a near-identity transformation can be exploited to encode intrinsic coordinates in which the dynamics are linear. The resulting dynamics are given by a Koopman operator matrix K. The decoder allows us to transform back to the original coordinates as well. Multiple time step prediction can be performed by repeated multiplication by the matrix K in the intrinsic coordinates. We demonstrate our method on a number of examples, including the heat equation and Burgers’ equation, as well as the substantially more challenging Kuramoto–Sivashinsky equation, showing that our method provides a robust architecture for discovering linearising transforms for non-linear PDEs.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Alexander Abanov ◽  
Tankut Can ◽  
Sriram Ganeshan

We consider free surface dynamics of a two-dimensional incompressible fluid with odd viscosity. The odd viscosity is a peculiar part of the viscosity tensor which does not result in dissipation and is allowed when parity symmetry is broken. For the case of incompressible fluids, the odd viscosity manifests itself through the free surface (no stress) boundary conditions. We first find the free surface wave solutions of hydrodynamics in the linear approximation and study the dispersion of such waves. As expected, the surface waves are chiral and even exist in the absence of gravity and vanishing shear viscosity. In this limit, we derive effective nonlinear Hamiltonian equations for the surface dynamics, generalizing the linear solutions to the weakly nonlinear case. Within the small surface angle approximation, the equation of motion leads to a new class of non-linear chiral dynamics governed by what we dub the chiral Burgers equation. The chiral Burgers equation is identical to the complex Burgers equation with imaginary viscosity and an additional analyticity requirement that enforces chirality. We present several exact solutions of the chiral Burgers equation. For generic multiple pole initial conditions, the system evolves to the formation of singularities in a finite time similar to the case of an ideal fluid without odd viscosity. We also obtain a periodic solution to the chiral Burgers corresponding to the non-linear generalization of small amplitude linear waves.


Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hannes Malcha ◽  
Hermann Nicolai

Abstract Supersymmetric Yang-Mills theories can be characterized by a non-local and non-linear transformation of the bosonic fields (Nicolai map) mapping the interacting functional measure to that of a free theory, such that the Jacobi determinant of the transformation equals the product of the fermionic determinants obtained by integrating out the gauginos and ghosts at least on the gauge hypersurface. While this transformation has been known so far only for the Landau gauge and to third order in the Yang-Mills coupling, we here extend the construction to a large class of (possibly non-linear and non-local) gauges, and exhibit the conditions for all statements to remain valid off the gauge hypersurface. Finally, we present explicit results to second order in the axial gauge and to fourth order in the Landau gauge.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 473
Author(s):  
Jehad Alzabut ◽  
A. George Maria Selvam ◽  
Rami Ahmad El-Nabulsi ◽  
D. Vignesh ◽  
Mohammad Esmael Samei

Pantograph, the technological successor of trolley poles, is an overhead current collector of electric bus, electric trains, and trams. In this work, we consider the discrete fractional pantograph equation of the form Δ*β[k](t)=wt+β,k(t+β),k(λ(t+β)), with condition k(0)=p[k] for t∈N1−β, 0<β≤1, λ∈(0,1) and investigate the properties of asymptotic stability of solutions. We will prove the main results by the aid of Krasnoselskii’s and generalized Banach fixed point theorems. Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of our theoretical findings.


2016 ◽  
Vol 44 (1) ◽  
pp. 521-543 ◽  
Author(s):  
Hermine Biermé ◽  
Agnès Desolneux

Sign in / Sign up

Export Citation Format

Share Document