Agent-Based and Other Computational Models for Complex Systems

2011 ◽  
pp. 243-282
2021 ◽  
Vol 9 (2) ◽  
pp. 417
Author(s):  
Sherli Koshy-Chenthittayil ◽  
Linda Archambault ◽  
Dhananjai Senthilkumar ◽  
Reinhard Laubenbacher ◽  
Pedro Mendes ◽  
...  

The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.


Science ◽  
2005 ◽  
Vol 310 (5750) ◽  
pp. 987-991 ◽  
Author(s):  
V. Grimm
Keyword(s):  

Author(s):  
Marisa Faggini ◽  
Bruna Bruno ◽  
Anna Parziale

AbstractFollowing the reverse engineering (RE) approach to analyse an economic complex system is to infer how its underlying mechanism works. The main factors that condition the difficulty of RE are the number of variable components in the system and, most importantly, the interdependence of components on one another and nonlinear dynamics. All those aspects characterize the economic complex systems within which economic agents make their choices. Economic complex systems are adopted in RE science, and they could be used to understand, predict and model the dynamics of the complex systems that enable to define and to control the economic environment. With the RE approach, economic data could be used to peek into the internal workings of the economic complex system, providing information about its underling nonlinear dynamics. The idea of this paper arises from the aim to deepen the comprehension of this approach and to highlight the potential implementation of tools and methodologies based on it to treat economic complex systems. An overview of the literature about the RE is presented, by focusing on the definition and on the state of the art of the research, and then we consider two potential tools that could translate the methodological issues of RE by evidencing advantages and disadvantages for economic analysis: the recurrence analysis and the agent-based model (ABM).


2018 ◽  
Vol 7 (1) ◽  
pp. 5-24 ◽  
Author(s):  
Martina Husáková

Abstract Complex systems are characterised by a huge amount of components, which are highly linked with each other. Tourism is one of the examples of complex systems collecting various activities leading to the enrichment of travellers in the view of receiving new experiences and increasing economic prosperity of specific destinations. The complex systems can be investigated with various bottom-up and top-down approaches. The multi-agent-based modelling is the bottom-up approach that is focused on the representation of individual entities for the exploration of possible interactions among them and their effects on surrounding environments. These systems are able to integrate knowledge of socio-cultural, economic, physical, biological or environmental systems for in-silico models development, which can be used for experimentation with a system. The main aim of the presented text is to introduce links between tourism, complexity and to advocate usefulness of the multi-agent-based systems for the exploration of tourism and its sustainability. The evaluation of suitability of the multi-agent systems in tourism is based on the investigation of fundamental characteristics of these two systems and on the review of specific applications of the multi-agent systems in sustainable tourism.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 90
Author(s):  
Nicolò Cogno ◽  
Roman Bauer ◽  
Marco Durante

Understanding the pathophysiology of lung fibrosis is of paramount importance to elaborate targeted and effective therapies. As it onsets, the randomly accumulating extracellular matrix (ECM) breaks the symmetry of the branching lung structure. Interestingly, similar pathways have been reported for both idiopathic pulmonary fibrosis and radiation-induced lung fibrosis (RILF). Individuals suffering from the disease, the worldwide incidence of which is growing, have poor prognosis and a short mean survival time. In this context, mathematical and computational models have the potential to shed light on key underlying pathological mechanisms, shorten the time needed for clinical trials, parallelize hypotheses testing, and improve personalized drug development. Agent-based modeling (ABM) has proven to be a reliable and versatile simulation tool, whose features make it a good candidate for recapitulating emergent behaviors in heterogeneous systems, such as those found at multiple scales in the human body. In this paper, we detail the implementation of a 3D agent-based model of lung fibrosis using a novel simulation platform, namely, BioDynaMo, and prove that it can qualitatively and quantitatively reproduce published results. Furthermore, we provide additional insights on late-fibrosis patterns through ECM density distribution histograms. The model recapitulates key intercellular mechanisms, while cell numbers and types are embodied by alveolar segments that act as agents and are spatially arranged by a custom algorithm. Finally, our model may hold potential for future applications in the context of lung disorders, ranging from RILF (by implementing radiation-induced cell damage mechanisms) to COVID-19 and inflammatory diseases (such as asthma or chronic obstructive pulmonary disease).


2016 ◽  
Vol 10 (4) ◽  
pp. 187-198 ◽  
Author(s):  
Orly Lahav ◽  
Nuha Chagab ◽  
Vadim Talis

Purpose The purpose of this paper is to examine a central need of students who are blind: the ability to access science curriculum content. Design/methodology/approach Agent-based modeling is a relatively new computational modeling paradigm that models complex dynamic systems. NetLogo is a widely used agent-based modeling language that enables exploration and construction of models of complex systems by programming and running the rules and behaviors. Sonification of variables and events in an agent-based NetLogo computer model of gas in a container is used to convey phenomena information. This study examined mainly two research topics: the scientific conceptual knowledge and systems reasoning that were learned as a result of interaction with the listen-to-complexity (L2C) environment as appeared in answers to the pre- and post-tests and the learning topics of kinetic molecular theory of gas in chemistry that was learned as a result of interaction with the L2C environment. The case study research focused on A., a woman who is adventitiously blind, for eight sessions. Findings The participant successfully completed all curricular assignments; her scientific conceptual knowledge and systems reasoning became more specific and aligned with scientific knowledge. Practical implications A practical implication of further studies is that they are likely to have an impact on the accessibility of learning materials, especially in science education for students who are blind, as equal access to low-cost learning environments that are equivalent to those used by sighted users would support their inclusion in the K-12 academic curriculum. Originality/value The innovative and low-cost learning system that is used in this research is based on transmittal of visual information of dynamic and complex systems, providing perceptual compensation by harnessing auditory feedback. For the first time the L2C system is based on sound that represents a dynamic rather than a static array. In this study, the authors explore how a combination of several auditory representations may affect cognitive learning ability.


2018 ◽  
Vol 53 (9) ◽  
pp. 560-569 ◽  
Author(s):  
Adam Hulme ◽  
Jason Thompson ◽  
Rasmus Oestergaard Nielsen ◽  
Gemma J M Read ◽  
Paul M Salmon

ObjectivesThere have been recent calls for the application of the complex systems approach in sports injury research. However, beyond theoretical description and static models of complexity, little progress has been made towards formalising this approach in way that is practical to sports injury scientists and clinicians. Therefore, our objective was to use a computational modelling method and develop a dynamic simulation in sports injury research.MethodsAgent-based modelling (ABM) was used to model the occurrence of sports injury in a synthetic athlete population. The ABM was developed based on sports injury causal frameworks and was applied in the context of distance running-related injury (RRI). Using the acute:chronic workload ratio (ACWR), we simulated the dynamic relationship between changes in weekly running distance and RRI through the manipulation of various ‘athlete management tools’.ResultsThe findings confirmed that building weekly running distances over time, even within the reported ACWR ‘sweet spot’, will eventually result in RRI as athletes reach and surpass their individual physical workload limits. Introducing training-related error into the simulation and the modelling of a ‘hard ceiling’ dynamic resulted in a higher RRI incidence proportion across the population at higher absolute workloads.ConclusionsThe presented simulation offers a practical starting point to further apply more sophisticated computational models that can account for the complex nature of sports injury aetiology. Alongside traditional forms of scientific inquiry, the use of ABM and other simulation-based techniques could be considered as a complementary and alternative methodological approach in sports injury research.


Sign in / Sign up

Export Citation Format

Share Document