Multiple Sclerosis and Related Disorders

2014 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS. This review contains 3 highly rendered figures, 7 tables, and 82 references.

2014 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS. This review contains 3 highly rendered figures, 7 tables, and 82 references.


2015 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS.   This chapter contains 3 highly rendered figures, 7 tables, 82 references, 1 teaching slide set, and 5 MCQs.


2015 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS.   This chapter contains 3 highly rendered figures, 7 tables, 82 references, 1 teaching slide set, and 5 MCQs.


2017 ◽  
Vol 16 (03) ◽  
pp. 164-170
Author(s):  
Rachel Gottlieb-Smith ◽  
Amy Waldman

AbstractAcquired demyelinating syndromes (ADS) present with acute or subacute monofocal or polyfocal neurologic deficits localizing to the central nervous system. The clinical features of distinct ADS have been carefully characterized including optic neuritis, transverse myelitis, and acute disseminated encephalomyelitis. These disorders may all be monophasic disorders. Alternatively, optic neuritis, partial transverse myelitis, and acute disseminated encephalomyelitis may be first presentations of a relapsing or polyphasic neuroinflammatory disorder, such as multiple sclerosis or neuromyelitis optica. The clinical features of these disorders and the differential diagnosis are discussed in this article.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
S. Viswanathan ◽  
N. Rose ◽  
A. Masita ◽  
J. S. Dhaliwal ◽  
S. D. Puvanarajah ◽  
...  

Background. Multiple sclerosis (MS) is an uncommon disease in multiracial Malaysia. Diagnosing patients with idiopathic inflammatory demyelinating diseases has been greatly aided by the evolution in diagnostic criterion, the identification of new biomarkers, and improved accessibility to neuroimaging in the country.Objectives. To investigate the spectrum of multiple sclerosis in Malaysia.Methods. Retrospective analysis with longitudinal follow-up of patients referred to a single tertiary medical center with neurology services in Malaysia.Results. Out of 245 patients with idiopathic inflammatory demyelinating disease, 104 patients had multiple sclerosis. Female to male ratio was 5 : 1. Mean age at onset was 28.6 ± 9.9 years. The Malays were the predominant racial group affected followed by the Chinese, Indians, and other indigenous groups. Subgroup analysis revealed more Chinese having neuromyelitis optica and its spectrum disorders rather than multiple sclerosis. Positive family history was reported in 5%. Optic neuritis and myelitis were the commonest presentations at onset of disease, and relapsing remitting course was the commonest disease pattern observed. Oligoclonal band positivity was 57.6%. At disease onset, 61.5% and 66.4% fulfilled the 2005 and 2010 McDonald’s criteria for dissemination in space. Mean cord lesion length was 1.86 ± 1.65 vertebral segments in the relapsing remitting group as opposed to 6.25 ± 5.18 vertebral segments in patients with neuromyelitis optica and its spectrum disorders.Conclusion. The spectrum of multiple sclerosis in Malaysia has changed over the years. Further advancement in diagnostic criteria will no doubt continue to contribute to the evolution of this disease here.


1975 ◽  
Vol 12 (3) ◽  
pp. 220-226 ◽  
Author(s):  
J. M. Adams ◽  
W. J. Brown ◽  
H. D. Snow ◽  
S. D. Lincoln ◽  
A. W. Sears ◽  
...  

Pathologic findings in mature dogs with old dog encephalitis were compared with the findings in multiple sclerosis, subacute sclerosing panencephalitis and neuromyelitis optica in man. Fluorescent antibody studies in animal and human tissues were compared. Optic neuritis in dogs with chronic distemper shows changes similar to those in the optic tract of human patients with severe demyelinating disease. The pathologic changes in multiple sclerosis, such as perivascular infiltration with lymphocytes, plasma cells and demyelination are similar to those seen in old dog encephalitis. Demyelination in old dog encephalitis is usually diffuse. The findings strongly support a possible relationship of old dog encephalitis to multiple sclerosis, subacute sclerosing panencephalitis, and neuromyelitis optica.


Author(s):  
Karl E. Misulis ◽  
E. Lee Murray

The hospital neurologist is often consulted to coordinate the evaluation and management of a host of known or suspected demyelinating diseases. Among the most common are multiple sclerosis, acute disseminated encephalomyelitis, optic neuritis, and transverse myelitis.


Author(s):  
Hans Lassmann ◽  
Danielle Seilhean

This chapter describes the basic neuropathology of multiple sclerosis and other inflammatory demyelinating diseases. It specifically addresses the nature of multiple sclerosis lesions, characterized by inflammation, selective primary demyelination with partial preservation of axons, remyelination, and reactive astroglial scar formation. Attention is paid to the importance of demyelinated lesions in the gray matter, and it discusses the differences of the pathology between the relapsing and the progressive stage of the disease. Finally, it summarizes the similarities and differences between multiple sclerosis and other inflammatory demyelinating diseases, such as acute multiple sclerosis, Baló concentric sclerosis, neuromyelitis optica, myelin oligodendrocyte glycoprotein antibody-associated disease and acute disseminated encephalomyelitis.


Author(s):  
Hans Lassmann ◽  
Raymond A. Sobel ◽  
Danielle Seilhean

This chapter describes and illustrates the morphologic changes observed in inflammatory demyelinating diseases. These are defined by the selective destruction of myelin sheaths and oligodendrocytes, arising in a background of acute or chronic inflammation. The spectrum of inflammatory demyelinating diseases includes multiple sclerosis, acute disseminated encephalomyelitis, Balo concentric sclerosis, and neuromyelitis optica. The etiology and pathogenesis of the diseases are discussed and criteria for the diagnosis of inflammatory demyelinating diseases on brain biopsies are provided.


2020 ◽  
Vol 36 (2) ◽  
pp. 141-147
Author(s):  
Hye Hyun Yoon ◽  
Ji Young Park ◽  
Su Yeong Kim ◽  
Na Mi Lee ◽  
Dae Yong Yi ◽  
...  

The epidemiology of demyelinating diseases in the Korean pediatric population has not been reported to date. This study aimed to identify the epidemiology of demyelinating diseases in Korean children by using big data. The subjects were children (0-17 years old) diagnosed with acute-disseminated encephalomyelitis, multiple sclerosis, neuromyelitis optica, and Guillain-Barré syndrome enrolled in the Korean Health Insurance Review and Assessment Service (HIRA) from January 2010 to December 2017. Of 1722 enrolled children, 553 (32.1%) had acute-disseminated encephalomyelitis, 170 (9.9%) had multiple sclerosis, 68 (3.9%) had neuromyelitis optica, and 931 (54.1%) had Guillain-Barré syndrome. The male-female ratios were 1.47:1 in acute-disseminated encephalomyelitis, 1.43:1 in Guillain-Barré syndrome, 1:1.66 in multiple sclerosis, and 1:1.62 in neuromyelitis optica. Demyelinating diseases were most prevalent in summer. The prevalence differed by region, with 545 (31.6%) in Seoul and 298 (17.3%) in Gyeonggi. This study is the first to identify the incidence of demyelinating diseases in South Korea.


Sign in / Sign up

Export Citation Format

Share Document