HIGH THROUGHPUT – SYSTEM-ORIENTED SCHEDULER FOR AVOIDING HASTE PROBLEM IN COMPUTATIONAL GRIDS

Author(s):  
Ahmed I. Saleh
Author(s):  
Ahmed I. Saleh

Scheduling is an important issue that must be handled carefully to realize the “Just login to compute” principle introduced by computational grids. Current grid schedulers suffer from the haste problem, which is the inability to schedule all tasks successfully. Accordingly, some tasks fail to complete execution as they are allocated to unsuitable workers. Others may not start execution as suitable workers are previously allocated to other tasks. This paper introduces the scheduling haste problem and presents a novel high throughput grid scheduler. The proposed scheduler selects the most suitable worker to execute an input grid task. Hence, it minimizes the turnaround time for a set of grid tasks. Moreover, the scheduler is system oriented and avoids the scheduling haste problem. Experimental results show that the proposed scheduler outperforms traditional grid schedulers as it introduces better scheduling efficiency.


2011 ◽  
Vol 3 (1) ◽  
pp. 21-44
Author(s):  
Ahmed I. Saleh

Scheduling is an important issue that must be handled carefully to realize the “Just login to compute” principle introduced by computational grids. Current grid schedulers suffer from the haste problem, which is the inability to schedule all tasks successfully. Accordingly, some tasks fail to complete execution as they are allocated to unsuitable workers. Others may not start execution as suitable workers are previously allocated to other tasks. This paper introduces the scheduling haste problem and presents a novel high throughput grid scheduler. The proposed scheduler selects the most suitable worker to execute an input grid task. Hence, it minimizes the turnaround time for a set of grid tasks. Moreover, the scheduler is system oriented and avoids the scheduling haste problem. Experimental results show that the proposed scheduler outperforms traditional grid schedulers as it introduces better scheduling efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Ian Roberts ◽  
Stephanie A. Carter ◽  
Cinzia G. Scarpini ◽  
Konstantina Karagavriilidou ◽  
Jenny C. J. Barna ◽  
...  

Reliable identification of copy number aberrations (CNA) from comparative genomic hybridization data would be improved by the availability of a generalised method for processing large datasets. To this end, we developed swatCGH, a data analysis framework and region detection heuristic for computational grids. swatCGH analyses sequentially displaced (sliding) windows of neighbouring probes and applies adaptive thresholds of varying stringency to identify the 10% of each chromosome that contains the most frequently occurring CNAs. We used the method to analyse a published dataset, comparing data preprocessed using four different DNA segmentation algorithms, and two methods for prioritising the detected CNAs. The consolidated list of the most commonly detected aberrations confirmed the value of swatCGH as a simplified high-throughput method for identifying biologically significant CNA regions of interest.


2007 ◽  
Vol 177 (4S) ◽  
pp. 52-53
Author(s):  
Stefano Ongarello ◽  
Eberhard Steiner ◽  
Regina Achleitner ◽  
Isabel Feuerstein ◽  
Birgit Stenzel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document