Dynamic Neural Network-based Fault Diagnosis of Gas Turbine Engines

Author(s):  
Sina S. Tayarani-Bathaie ◽  
Zakieh Sadough ◽  
Khashayar Khorasani
2014 ◽  
Vol 125 ◽  
pp. 153-165 ◽  
Author(s):  
S. Sina Tayarani-Bathaie ◽  
Z.N. Sadough Vanini ◽  
K. Khorasani

Author(s):  
Д.О. Пушкарёв

Рассматривается применение нейросетевых экспертных систем в области контроля, диагностики и прогнозирования технического состояния авиационных ГТД на основе нечеткой логики. Показана методика для решения таких задач в области технической эксплуатации авиационной техники совместно с использованием фаззи-интерференсной системы программы MATLAB. Используя статистические данные о работе двигателя формируется экспертная система на основе нейронной сети позволяющая осуществлять контроль и диагностику ГТД, а также прогнозировать дальнейшее техническое состояния анализируемого двигателя. The application of neural network expert systems in the field of monitoring, diagnostics and forecasting of the technical condition of aviation gas turbine engines based on fuzzy logic is considered. The technique for solving such problems in the field of technical operation of aircraft and using the fuzzy-interference system of the MATLAB program is shown. Using statistical data on the operation of the engine, an expert system is based on the fundamental of a neural network that provide monitoring and diagnostics of gas turbine engines, as well as predicting the further technical condition of the analyzed engine.


Author(s):  
A. Vatani ◽  
K. Khorasani ◽  
N. Meskin

In this paper two artificially intelligent methodologies are proposed and developed for degradation prognosis and health monitoring of gas turbine engines. Our objective is to predict the degradation trends by studying their effects on the engine measurable parameters, such as the temperature, at critical points of the gas turbine engine. The first prognostic scheme is based on a recurrent neural network (RNN) architecture. This architecture enables ONE to learn the engine degradations from the available measurable data. The second prognostic scheme is based on a nonlinear auto-regressive with exogenous input (NARX) neural network architecture. It is shown that this network can be trained with fewer data points and the prediction errors are lower as compared to the RNN architecture. To manage prognostic and prediction uncertainties upper and lower threshold bounds are defined and obtained. Various scenarios and case studies are presented to illustrate and demonstrate the effectiveness of our proposed neural network-based prognostic approaches. To evaluate and compare the prediction results between our two proposed neural network schemes, a metric known as the normalized Akaike information criterion (NAIC) is utilized. A smaller NAIC shows a better, a more accurate and a more effective prediction outcome. The NAIC values are obtained for each case and the networks are compared relatively with one another.


Author(s):  
Craig R. Davison ◽  
A. M. Birk

A computer model of a gas turbine auxiliary power unit was produced to develop techniques for fault diagnosis and prediction of remaining life in small gas turbine engines. Due to the relatively low capital cost of small engines it is important that the techniques have both low capital and operating costs. Failing engine components were identified with fault maps, and an algorithm was developed for predicting the time to failure, based on the engine’s past operation. Simulating daily engine operation over a maintenance cycle tested the techniques for identification and prediction. The simulation included daily variations in ambient conditions, operating time, load, engine speed and operating environment, to determine the amount of degradation per day. The algorithm successfully adapted to the daily changes and corrected the operating point back to standard conditions to predict the time to failure.


Aviation ◽  
2013 ◽  
Vol 17 (2) ◽  
pp. 52-56 ◽  
Author(s):  
Mykola Kulyk ◽  
Sergiy Dmitriev ◽  
Oleksandr Yakushenko ◽  
Oleksandr Popov

A method of obtaining test and training data sets has been developed. These sets are intended for training a static neural network to recognise individual and double defects in the air-gas path units of a gas-turbine engine. These data are obtained by using operational process parameters of the air-gas path of a bypass turbofan engine. The method allows sets that can project some changes in the technical conditions of a gas-turbine engine to be received, taking into account errors that occur in the measurement of the gas-dynamic parameters of the air-gas path. The operation of the engine in a wide range of modes should also be taken into account.


Author(s):  
Yu Hu ◽  
Jietang Zhu ◽  
Zhensheng Sun ◽  
Lijia Gao

As the flight envelope is widening continuously and operational capability is improving sequentially, gas turbine engines are faced with new challenges of increased operation and maintenance requirements for efficiency, reliability, and safety. The measures for security and safety and the need for reducing the life cycle cost make it necessary to develop more accurate and efficient monitoring and diagnostic schemes for the health management of gas turbine components. Sensors along the gas path are one of the components in gas turbines that play a crucial role in turbofan engines owing to their safety criticality. Failures in sensor measurements often result in serious problems affecting flight safety and performance. Therefore, this study aims to develop an online diagnosis system for gas path sensor faults in a turbofan engine. The fault diagnosis system is designed and implemented using a genetic algorithm optimized recursive reduced least squares support vector regression algorithm. This method uses a reduction technique and recursion strategy to obtain a better generalization performance and sparseness, and exploits an improved genetic algorithm to choose the optimal model parameters for improving the training precision. The effectiveness of the sensor fault diagnosis system is then validated through typical fault modes of single and dual sensors.


Sign in / Sign up

Export Citation Format

Share Document