scholarly journals Improvements of Elasticity and tensile strength of Glass Fiber Reinforced Thermoplastic Polypropylene by Electron Beam Irradiation

2016 ◽  
Vol 80 (6) ◽  
pp. 360-364 ◽  
Author(s):  
Masaya Okuhara ◽  
Ryo Nomura ◽  
Yoshitake Nishi
2021 ◽  
Vol 7 (8) ◽  
pp. 79528-79537
Author(s):  
Pedro Marcio Munhoz ◽  
Fernando Codelo Nascimento ◽  
Leonardo Gondim de Andrade e Silva ◽  
Julio Harada ◽  
Wilson Aparecido Parejo Calvo

The aim of this research was to evaluate the changes in the mechanical properties of poly(butylene adipate co-terephthalate)/poly(lactic acid) (PBAT/PLA) polymeric blend after the radiation process at different radiation doses. The irradiation was performed in an electron beam accelerator, with 1.5 MeV of energy and 25 mA electric current. The samples were irradiated with doses of 5, 10, 15, 25, 50, 65 and 80 kGy. Both irradiated and non-irradiated samples were characterized by Izod pendulum impact resistance and tensile strength at rupture. The results showed an increase of 44% in relation to Izod impact resistance at a dose of 65 kGy. However, the module of elasticity decreased 56% and tensile strength at rupture decreased 55% at the same radiation dose. In relation to elongation, significant alterations caused by electron beam irradiation was not observed. Therefore, it can be concluded that irradiated blends could be used to make environmentally friendly products, which could absorb impact energy. 


2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


2014 ◽  
Vol 6 (9) ◽  
pp. 6120-6126 ◽  
Author(s):  
Sandi G. Miller ◽  
Tiffany S. Williams ◽  
James S. Baker ◽  
Francisco Solá ◽  
Marisabel Lebron-Colon ◽  
...  

Author(s):  
Kulwinder Singh Chani ◽  
JS Saini ◽  
H Bhunia

This work deals with the accelerated aging of the bolted joints prepared from glass fiber-reinforced nanocomposite laminates. ASTM D5961 was used to design the bolted joint, and the geometric parameters, i.e. width-to hole-diameter ( W/ D) ratio and edge distance-to-hole diameter ( E/ D) ratio were fixed to 6 and 5, respectively. ASTM D1544 was used for accelerated aging, and a maximum of 500 h cyclical ultraviolet exposure, 8 h of ultraviolet radiation at 60 ℃ followed by 4 h of condensation at 50 ℃, was given to the specimens. A full factorial design of experiment was conducted on important control factors, i.e. aging time, bolt torque, and material variation, using response surface methodology. To investigate the effect of nanoclay content, a range of 0–5 wt% was investigated. Specimens with 3 wt% of nanoclay demonstrated optimum tensile strength and were selected to manufacture the bolted joint. Nanoplatelets having high aspect ratio increased the specific surface area and thus the tensile strength of the nanocomposite. It was found that the strength of the joints prepared with and without the nanoclay content decreased with the increase in the duration of aging. However, the joints with the nanoclay content had higher failure loads. The strength retention in the joints with nanoclay content was more in comparison to the joints made with neat epoxy. Nanoclay acted as a mechanical interlock at the fiber–matrix interface and improved the interfacial bond strength. A good dispersion of nanoclay also acts as a barrier to the moisture, which eventually reduces the degradation of the composite material due to the lesser fiber–matrix de-bonding under accelerated aging conditions.


Sign in / Sign up

Export Citation Format

Share Document