fiber length distribution
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 152808372110432
Author(s):  
Fatemeh Asoodeh ◽  
Mohammad Aghvami-Panah ◽  
Saeed Salimian ◽  
Mohammadreza Naeimirad ◽  
Hamed khoshnevis ◽  
...  

This article aims to investigate the effect of dispersion and uniformity of fiber length distribution on the rheological and mechanical behavior of polypropylene reinforced with short glass fiber. The composites were prepared through melt compounding with three various glass fiber concentrations using a twin-screw extruder. Multiple extrusion processing was used to alter and manipulate the fibers’ length inside the composites. The fiber length distribution was analyzed via the photomicrograph technique. Rheological measurements indicated that the molten samples were visco-plastic fluids and the Herschel–Bulkley model is the best model for fitting on the rheological behavior diagram. Variables of the fitted model are noticeably altered by the fiber length distribution. Moreover, rheological assessments revealed that the non-Newtonian behavior of the molten composites significantly diminished after the second extrusion processing, while it did not have much effect on the fiber length reduction. In the second phase, tensile and flexural properties were determined to detect the mechanical properties. The results indicated that the tensile strength of the composite has a direct relation with the fiber length distribution factor while the flexural strength is independent of fiber length. Furthermore, the highest tensile and flexural strength attained from the composite containing the highest fiber volume fraction.


2021 ◽  
Vol 36 (4) ◽  
pp. 350-357
Author(s):  
M. Guo ◽  
X. Li ◽  
J. M. Maia

Abstract New extensional mixing elements (EME) for twin-screw extrusion were applied to compound glass fibers (GF), carbon fibers (CF) or polyethylene terephthalate fibers (PETF) reinforced polymer composites with polymer matrix of polypropylene (PP) or polyethylene oxide (PEO) and the resulting fiber degradation upon processing was evaluated and compared with compounding via shear flow-dominated kneading blocks (KB). Composites structures were characterized in terms of fiber length and distribution, and cumulative length ratio, at five locations along the mixing zone. Although significant fiber breakage was achieved for both configurations, it was markedly lower in composites processed using the EME, because whereas the high shear stress kneading motion in the KB degrades fibers significantly, fiber breakup is significantly minimized by the alignment induced by the EME prior to flow in the high-stress regions.


Author(s):  
Rahul Suresh ◽  
Daniel Picard ◽  
Rita Lo ◽  
Jamie Beaulieu ◽  
Marc Remke ◽  
...  

Abstract Background Alterations in actin subunit expression have been reported in multiple cancers, but have not been investigated previously in medulloblastoma. Methods Bioinformatic analysis of multiple medulloblastoma tumor databases was performed to profile ACTC1 mRNA levels. Western blot was used to verify protein expression in established medulloblastoma cell lines. Immunofluorescence microscopy was performed to assess ACTC1 localization. Stable cell lines with ACTC1 overexpression were generated and shRNA knockdown of ACTC1 was accomplished. We used PARP1 cleavage by Western blot as a marker of apoptosis and cell survival was determined by FACS viability assay and colony formation. Cell migration with overexpression or knockdown of ACTC1 was determined by the scratch assay. Stress fiber length distribution was assessed by fluorescence microscopy. Results : ACTC1 mRNA expression is highest in SHH and WNT medulloblastoma among all subgroups. ACTC1 protein was confirmed by Western blot in SHH subgroup and Group 3 subgroup cell lines with the lowest expression in Group 3 cells. Microscopy demonstrated ACTC1 co-localization with F-actin. Overexpression of ACTC1 in Group 3 cells abolished the apoptotic response to Aurora kinase B inhibition. Knockdown of ACTC1 in SHH cells and in Myc overexpressing SHH cells induced apoptosis impaired colony formation, and inhibited migration. Changes in stress fiber length distribution in medulloblastoma cells are induced by alterations in ACTC1 abundance. Conclusions Alpha-cardiac actin (ACTC1) is expressed in SHH medulloblastoma. Expression of this protein in medulloblastoma modifies stress fiber composition and functions in promoting resistance to apoptosis induced by mitotic inhibition, enhancing cell survival, and controlling migration.


2020 ◽  
pp. 096739112093010 ◽  
Author(s):  
Pritesh Yeole ◽  
Shailesh Alwekar ◽  
N Krishnan P Veluswamy ◽  
Surbhi Kore ◽  
Nitilaksha Hiremath ◽  
...  

In this work, we consider low-cost carbon fiber produced with a textile-grade precursor. The objective of the study is to investigate textile-grade carbon-fiber-reinforced-polypropylene composites (TCF-PP) from compounded pellets for mechanical and thermal characterization. Four sets of pellets with 1%, 5%, 10%, and 15% reinforcement were manufactured using textile-grade carbon fiber (TCF) and polypropylene (PP) by twin-screw compounding. The addition of TCFs through gravimetric feeder directly in the extruder resulted in lower fiber content; however, side feeder has shown good potential. The pellets were further processed in extrusion compression molding to manufacture plaques. An increase in fiber loading has a negligible effect on fiber attrition as fiber length distribution variation between 1% and 15% reinforced pellets was very small. The addition of TCFs in PP showed a significant improvement in mechanical properties. The tensile strength and modulus of the composite were 26% and 161%, respectively, improved by the addition of 10 wt% TCF. Similar results were observed in the flexure test. However, the impact properties were reduced by 25.54% by the addition of 15% TCF.


2020 ◽  
Vol 30 (sup1) ◽  
pp. 59-76
Author(s):  
Mariko Terada ◽  
Atsuhiko Yamanaka ◽  
Daisuke Shimamoto ◽  
Yuji Hotta ◽  
Koji Shiraki ◽  
...  

2020 ◽  
Vol 39 (11-12) ◽  
pp. 473-484 ◽  
Author(s):  
Junyang Kang ◽  
Ming Huang ◽  
Mengfei Zhang ◽  
Na Zhang ◽  
Gang Song ◽  
...  

Fiber length is an important factor affecting the mechanical properties of long fiber reinforced thermoplastic (LFRT). When LFRT is processed by injection molding, the strong shear flow usually leads to severe fiber breakage. Therefore, it is a crucial issue to reduce the loss of fiber length as much as possible during composite molding. Current work focused on constructing an effective model for predicting fiber breaking caused by shear stress during melt filling. Based on the Oseen formula, the disturbance of liquid flow caused by a single external force was studied, and the force acceptance formula of fiber immersed in flow field was derived. A mechanical model for characterizing the degree of fibers buckling and breaking and the shear stress was constructed by the Euler buckling criterion. To verify the model, glass fiber reinforced polypropylene (GF/PP) composites with initial fiber length of 3 mm and 6 mm was subjected to shear at the specific shear rate by using a rotating rheometer. The length of GF after sheared was measured by fiber length distribution analyser. The breaking ratio of fibers was predicted using the new model, and the predicted results were in good agreement with experiment, although more comparisons with experiments are necessary.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Kevin Breuer ◽  
Markus Stommel

AbstractThis study presents an analysis of modelling aspects on the effective composite properties of short glass fiber reinforced thermoplastics using representative volume elements (RVE). Although, many investigations were published showing effects of different modelling parameters of RVEs, we further elaborate in this contribution the parameters: influence of fiber packing, fiber shape, bonding of the fibers to the matrix, fiber length distribution and fiber orientation. The knowledge of these influences is used to determine the extent to which the increased modelling accuracy and thus the computational effort leads to an improved RVE’s forecast quality. This objective is achieved by creating and comparing different RVE models of a PBT-GF20 composite. The information required for the RVE models is obtained by experimental characterization of the PBT-GF20 and the PBT matrix material. It can be concluded based on the results of the numerical investigations in conjunction with the experimental tests of the composite that fiber packing, fiber length distribution, fiber orientation and fiber geometry are essential for a precise determination of the effective composite properties.


Sign in / Sign up

Export Citation Format

Share Document