scholarly journals Evaluation of Grain Refinement and Mechanical Property on Friction Stir Welded Inconel 600

2009 ◽  
Vol 50 (4) ◽  
pp. 832-836 ◽  
Author(s):  
Kuk Hyun Song ◽  
Hidetoshi Fujii ◽  
Kazuhiro Nakata
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3606
Author(s):  
Tomoya Nagira ◽  
Xiaochao Liu ◽  
Kohasaku Ushioda ◽  
Hidetoshi Fujii

The grain refinement mechanisms along the material flow path in pure and high-purity Al were examined, using the marker insert and tool stop action methods, during the rapid cooling friction stir welding using liquid CO2. In pure Al subjected to a low welding temperature of 0.56Tm (Tm: melting point), the resultant microstructure consisted of a mixture of equiaxed and elongated grains, including the subgrains. Discontinuous dynamic recrystallization (DDRX), continuous dynamic recrystallization (CDRX), and geometric dynamic recrystallization are the potential mechanisms of grain refinement. Increasing the welding temperature and Al purity encouraged dynamic recovery, including dislocation annihilation and rearrangement into subgrains, leading to the acceleration of CDRX and inhibition of DDRX. Both C- and B/-type shear textures were developed in microstructures consisting of equiaxed and elongated grains. In addition, DDRX via high-angle boundary bulging resulted in the development of the 45° rotated cube texture. The B/ shear texture was strengthened for the fine microstructure, where equiaxed recrystallized grains were fully developed through CDRX. In these cases, the texture is closely related to grain structure development.


2020 ◽  
Vol 52 ◽  
pp. 263-269 ◽  
Author(s):  
Jianing Li ◽  
Molin Su ◽  
Wenjun Qi ◽  
Chen Wang ◽  
Peng Zhao ◽  
...  

2017 ◽  
Vol 904 ◽  
pp. 29-35
Author(s):  
Da Yu Wang ◽  
Zhi Ming Du ◽  
Hong Juan Zhang ◽  
Li Hua Chen ◽  
Chang Shun Wang

Mg-Zn-Zr-Y billets with different mass fraction of Y (wt%(Y)=0.2%、0.5%、1.0%、1.5%、2.0%) was prepared by permanent mold casting. The increase in Y content has shown grain refinement effects on the microstructure morphologies of Mg–Zn–Y–Zr alloys. When the content of Y achieves 1.0 wt%, the grain refinement effect of the Y is most obvious than any more contents of the Y content. In the test result of XRD, the type of precipitated phase in Mg-Zn-Zr-Y alloys is related to atomic ratio of Y/Zn. With content of Y increases, atomic ratio of Y/Zn increases,the precipitated phase in alloy is changed from Phase I to Phase W. Tensile strength and extension rate of alloy increase with the increasing of Y content; When Y content reaches 1.0%, mechanical property reaches maximum value.When content of Y exceeds 1.0%, with the increasing of Y content, mechanical property of alloy declines gradually.


Metals ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 375 ◽  
Author(s):  
Abbas Tamadon ◽  
Dirk Pons ◽  
Kamil Sued ◽  
Don Clucas

Author(s):  
Tao Sun ◽  
Yifu Shen ◽  
Fujun Cao ◽  
Yinfei Yan ◽  
Ruiyang Ni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document