scholarly journals Effects of Grain Size, Thickness and Tensile Direction on Ductility of Pure Titanium Sheet

Author(s):  
Hidenori Takebe ◽  
Kohsaku Ushioda
2019 ◽  
Vol 960 ◽  
pp. 9-13
Author(s):  
Run Qi Zhang ◽  
Yi Qin Cai ◽  
Hao Xu Wang ◽  
Zhuang Li ◽  
Qi Zhou

Different cold rolling reductions were adopted for commercially pure titanium sheet. Cold forming properties were investigated by a microstructural analysis, Vickers microhardness and erichsen value measurements. The results have shown that Cold rolling resulted in refined alpha grains. Alpha grain size was refined further by greater cold reduction. Alpha grain sizes of the specimens of processing 1, 2 and 3 reached 30.90 μm, 26.48 μm and 20.58 μm, respectively. Cold forming properties were affected by different alpha grain sizes. The hardness and erichsen value reached the lowest and the highest values for the specimens in processing 1. The hardness increased and erichsen value decreased due to the finer alpha grain size for the specimen which was cold-rolled at a reduction of 50% in processing 2. Erichsen test results of the specimens of processing 3 had the lowest values due to the deformation of a reduction of 70%. Cold forming properties of the specimens of processing 3 were deteriorated, this is because deformation leads to the high dislocation density and the stored energy increases with accumulated strain after deformation.


2020 ◽  
Vol 837 ◽  
pp. 41-45
Author(s):  
Shuai Sun ◽  
Kai Hua Liu

In order to determine the evolution features of deformation twins for TA2 commercial pure titanium (cp-TA2), the TA2 samples were bent under different bending angles in three-point bending tests via a universal testing machine. The electron backscatter diffraction (EBSD) technique was applied to identify the grain boundaries (GBs) and twin boundaries (TBs) in the bending areas. The results reveal that the type of deformation area would effect the evolution of different deformation twins. It is inferred that the state of stress would promote the multiplication of the same type of deformation twins.


2021 ◽  
Vol 827 ◽  
pp. 142060
Author(s):  
Bingshu Wang ◽  
Huimin Liu ◽  
Yonggan Zhang ◽  
Baoxue Zhou ◽  
Liping Deng ◽  
...  

2017 ◽  
Vol 207 ◽  
pp. 263-268 ◽  
Author(s):  
Takayuki Hama ◽  
Takeyuki Sakai ◽  
Yusuke Fujisaki ◽  
Hitoshi Fujimoto ◽  
Hirohiko Takuda

2011 ◽  
Vol 674 ◽  
pp. 47-51 ◽  
Author(s):  
Krzysztof Topolski ◽  
Halina Garbacz ◽  
Wacław Pachla ◽  
Krzysztof J. Kurzydlowski

The aim of this study was to investigate the homogeneity of the bulk nanocrystalline titanium rods obtained by Hydrostatic Extrusion (HE). The investigated material was commercially pure titanium grade 2. The final products of extrusion were nanocrystalline rods with diameters of 7 and 10 mm and lengths of about 250 mm. The size and shape of the grains were examined on transverse sections using transmission electron microscopy (TEM). The grain size was determined by the average grain equivalent diameter d2. The grain size diversity was quantified in terms of the equivalent diameter coefficient of variation CV (d2). The samples for the microscopic analyses were cut from various regions of the rods i.e. top, end, centre, and from surface of the rods. In all the samples, the average grain size determined on transverse sections was about 70 nm and the nano-grains in the various regions of the rods were similar in the shape. The examinations demonstrated that the nanostructure of the extruded rods was homogeneous. This observation was confirmed by the results of microhardness measurements.


Sign in / Sign up

Export Citation Format

Share Document