769-P: Short-Term Dietary Reduction of Branched-Chain Amino Acids Reduces Meal-Induced Insulin Secretion and Modifies Microbiome Composition in Overweight Patients with Type 2 Diabetes

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 769-P
Author(s):  
YANISLAVA KARUSHEVA ◽  
THERESA VAN GEMERT ◽  
KLAUS STRASSBURGER ◽  
DANIEL F. MARKGRAF ◽  
TOMAS JELENIK ◽  
...  
2019 ◽  
Vol 110 (5) ◽  
pp. 1098-1107 ◽  
Author(s):  
Yanislava Karusheva ◽  
Theresa Koessler ◽  
Klaus Strassburger ◽  
Daniel Markgraf ◽  
Lucia Mastrototaro ◽  
...  

ABSTRACT Background Epidemiological studies have shown that increased circulating branched-chain amino acids (BCAAs) are associated with insulin resistance and type 2 diabetes (T2D). This may result from altered energy metabolism or dietary habits. Objective We hypothesized that a lower intake of BCAAs improves tissue-specific insulin sensitivity. Methods This randomized, placebo-controlled, double-blinded, crossover trial examined well-controlled T2D patients receiving isocaloric diets (protein: 1 g/kg body weight) for 4 wk. Protein requirements were covered by commercially available food supplemented ≤60% by an AA mixture either containing all AAs or lacking BCAAs. The dietary intervention ensured sufficient BCAA supply above the recommended minimum daily intake. The patients underwent the mixed meal tolerance test (MMT), hyperinsulinemic-euglycemic clamps (HECs), and skeletal muscle and white adipose tissue biopsies to assess insulin signaling. Results After the BCAA− diet, BCAAs were reduced by 17% during fasting (P < 0.001), by 13% during HEC (P < 0.01), and by 62% during the MMT (P < 0.001). Under clamp conditions, whole-body and hepatic insulin sensitivity did not differ between diets. After the BCAA− diet, however, the oral glucose sensitivity index was 24% (P < 0.01) and circulating fibroblast-growth factor 21 was 21% higher (P < 0.05), whereas meal-derived insulin secretion was 28% lower (P < 0.05). Adipose tissue expression of the mechanistic target of rapamycin was 13% lower, whereas the mitochondrial respiratory control ratio was 1.7-fold higher (both P < 0.05). The fecal microbiome was enriched in Bacteroidetes but depleted of Firmicutes. Conclusions Short-term dietary reduction of BCAAs decreases postprandial insulin secretion and improves white adipose tissue metabolism and gut microbiome composition. Longer-term studies will be needed to evaluate the safety and metabolic efficacy in diabetes patients. This trial was registered at clinicaltrials.gov as NCT03261362.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1275-P
Author(s):  
ABBY MEYERS ◽  
CELESTE K. CRAVALHO ◽  
ALFREDO VILLALOBOS-PEREZ ◽  
SAMANTHA MATTA ◽  
LILIAN MABUNDO ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 773-P
Author(s):  
YANISLAVA KARUSHEVA ◽  
THERESA VAN GEMERT ◽  
MARIE-CHRISTINE SIMON ◽  
DANIEL F. MARKGRAF ◽  
KLAUS STRASSBURGER ◽  
...  

2018 ◽  
Vol 56 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Akinkunmi Paul Okekunle ◽  
Meng Zhang ◽  
Zhen Wang ◽  
Justina Ucheojor Onwuka ◽  
Xiaoyan Wu ◽  
...  

2018 ◽  
Vol 64 (8) ◽  
pp. 1203-1210 ◽  
Author(s):  
Deirdre K Tobias ◽  
Clary Clish ◽  
Samia Mora ◽  
Jun Li ◽  
Liming Liang ◽  
...  

Abstract BACKGROUND Circulating branched-chain amino acids (BCAAs; isoleucine, leucine, valine) are consistently associated with increased type 2 diabetes (T2D) risk, but the relationship with dietary intake of BCAAs is less clear. METHODS The longitudinal Nurses' Health Study II cohort conducted a blood collection from 1996 to 1999. We profiled plasma metabolites among 172 incident T2D cases and 175 age-matched controls from women reporting a history of gestational diabetes before blood draw. We estimated dietary energy-adjusted BCAAs from food frequency questionnaires. We used conditional logistic regression models to estimate odds ratios (OR) and 95% CI of T2D risk across quartiles (Q1–Q4) of BCAAs, adjusting for age, body mass index (BMI), physical activity, family history, and other established risk factors. We also assessed joint exposure to below/above medians of diet and plasma concentrations, with lower diet/lower plasma as reference. RESULTS Dietary and plasma BCAA concentrations were positively associated with incident T2D (diet Q4 vs Q1 OR = 4.6, CI = 1.6, 13.4; plasma Q4 vs Q1 OR = 4.4, CI = 1.4, 13.4). Modeling the joint association indicated that higher diet BCAAs were associated with T2D when plasma concentrations were also higher (OR = 6.0, CI = 2.1, 17.2) but not when concentrations were lower (OR = 1.6, CI = 0.61, 4.1). Conversely, higher plasma BCAAs were associated with increased T2D for either lower or higher diet. CONCLUSIONS Independent of BMI and other risk factors, higher diet and plasma BCAA concentrations were associated with an increased incident T2D risk among high-risk women with a history of gestational diabetes, supporting impaired BCAA metabolism as conferring T2D risk.


2018 ◽  
Vol 7 (12) ◽  
pp. 513 ◽  
Author(s):  
Jose Flores-Guerrero ◽  
Maryse Osté ◽  
Lyanne Kieneker ◽  
Eke Gruppen ◽  
Justyna Wolak-Dinsmore ◽  
...  

Plasma branched-chain amino acids (BCAAs) are linked to metabolic disease, but their relevance for prediction of type 2 diabetes development is unclear. We determined the association of plasma BCAAs with type 2 diabetes risk in the prevention of renal and vascular end-stage disease (PREVEND) cohort. The BCAAs were measured by means of nuclear magnetic resonance spectroscopy. We evaluated the prospective associations of BCAAs with type 2 diabetes in 6244 subjects. The BCAAs were positively associated with HOMA-IR after multivariable adjustment (p < 0.0001). During median follow-up for 7.5 years, 301 cases of type 2 diabetes were ascertained. The Kaplan-Meier plot demonstrated that patients in the highest BCAA quartile presented a higher risk (p log-rank < 0.001). Cox regression analyses revealed a positive association between BCAA and type 2 diabetes; the hazard ratio (HR) for the highest quartile was 6.15 (95% CI: 4.08, 9.24, p < 0.0001). After adjustment for multiple clinical and laboratory variables, the association remained (HR 2.80 (95% CI: 1.72, 4.53), p < 0.0001). C-statistics, Net reclassification improvement, and −2 log likelihood were better after adding BCAAs to the traditional risk model (p = 0.01 to <0.001). In conclusions, high concentrations of BCAAs associate with insulin resistance and with increased risk of type 2 diabetes. This association is independent of multiple risk factors, HOMA-IR and β cell function.


2016 ◽  
Vol 31 (suppl_1) ◽  
pp. i214-i215
Author(s):  
Olha Zhenyukh ◽  
Esther Civantos ◽  
Enrique Bosch-Panadero ◽  
Concepción Peiró ◽  
Jesús Egido ◽  
...  

1991 ◽  
Vol 10 (2) ◽  
pp. 105-113 ◽  
Author(s):  
G. Marchesini ◽  
G.P. Bianchi ◽  
H. Vilstrup ◽  
M. Capelli ◽  
M. Zoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document