scholarly journals Dietary Intakes and Circulating Concentrations of Branched-Chain Amino Acids in Relation to Incident Type 2 Diabetes Risk Among High-Risk Women with a History of Gestational Diabetes Mellitus

2018 ◽  
Vol 64 (8) ◽  
pp. 1203-1210 ◽  
Author(s):  
Deirdre K Tobias ◽  
Clary Clish ◽  
Samia Mora ◽  
Jun Li ◽  
Liming Liang ◽  
...  

Abstract BACKGROUND Circulating branched-chain amino acids (BCAAs; isoleucine, leucine, valine) are consistently associated with increased type 2 diabetes (T2D) risk, but the relationship with dietary intake of BCAAs is less clear. METHODS The longitudinal Nurses' Health Study II cohort conducted a blood collection from 1996 to 1999. We profiled plasma metabolites among 172 incident T2D cases and 175 age-matched controls from women reporting a history of gestational diabetes before blood draw. We estimated dietary energy-adjusted BCAAs from food frequency questionnaires. We used conditional logistic regression models to estimate odds ratios (OR) and 95% CI of T2D risk across quartiles (Q1–Q4) of BCAAs, adjusting for age, body mass index (BMI), physical activity, family history, and other established risk factors. We also assessed joint exposure to below/above medians of diet and plasma concentrations, with lower diet/lower plasma as reference. RESULTS Dietary and plasma BCAA concentrations were positively associated with incident T2D (diet Q4 vs Q1 OR = 4.6, CI = 1.6, 13.4; plasma Q4 vs Q1 OR = 4.4, CI = 1.4, 13.4). Modeling the joint association indicated that higher diet BCAAs were associated with T2D when plasma concentrations were also higher (OR = 6.0, CI = 2.1, 17.2) but not when concentrations were lower (OR = 1.6, CI = 0.61, 4.1). Conversely, higher plasma BCAAs were associated with increased T2D for either lower or higher diet. CONCLUSIONS Independent of BMI and other risk factors, higher diet and plasma BCAA concentrations were associated with an increased incident T2D risk among high-risk women with a history of gestational diabetes, supporting impaired BCAA metabolism as conferring T2D risk.

2018 ◽  
Vol 56 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Akinkunmi Paul Okekunle ◽  
Meng Zhang ◽  
Zhen Wang ◽  
Justina Ucheojor Onwuka ◽  
Xiaoyan Wu ◽  
...  

2020 ◽  
Vol 30 (11) ◽  
pp. 2077-2084
Author(s):  
Emily W. Harville ◽  
Lydia Bazzano ◽  
Lu Qi ◽  
Jiang He ◽  
Kirsten Dorans ◽  
...  

2004 ◽  
Vol 82 (7) ◽  
pp. 506-514 ◽  
Author(s):  
Enoka P Wijekoon ◽  
Craig Skinner ◽  
Margaret E Brosnan ◽  
John T Brosnan

We investigated amino acid metabolism in the Zucker diabetic fatty (ZDF Gmi fa/fa) rat during the prediabetic insulin-resistant stage and the frank type 2 diabetic stage. Amino acids were measured in plasma, liver, and skeletal muscle, and the ratios of plasma/liver and plasma/skeletal muscle were calculated. At the insulin-resistant stage, the plasma concentrations of the gluconeogenic amino acids aspartate, serine, glutamine, glycine, and histidine were decreased in the ZDF Gmi fa/fa rats, whereas taurine, α-aminoadipic acid, methionine, phenylalanine, tryptophan, and the 3 branched-chain amino acids were significantly increased. At the diabetic stage, a larger number of gluconeogenic amino acids had decreased plasma concentrations. The 3 branched-chain amino acids had elevated plasma concentrations. In the liver and the skeletal muscles, concentrations of many of the gluconeogenic amino acids were lower at both stages, whereas the levels of 1 or all of the branched-chain amino acids were elevated. These changes in amino acid concentrations are similar to changes seen in type 1 diabetes. It is evident that insulin resistance alone is capable of bringing about many of the changes in amino acid metabolism observed in type 2 diabetes.Key words: plasma amino acids, liver amino acids, muscle amino acids, gluconeogenesis.


2018 ◽  
Vol 7 (12) ◽  
pp. 513 ◽  
Author(s):  
Jose Flores-Guerrero ◽  
Maryse Osté ◽  
Lyanne Kieneker ◽  
Eke Gruppen ◽  
Justyna Wolak-Dinsmore ◽  
...  

Plasma branched-chain amino acids (BCAAs) are linked to metabolic disease, but their relevance for prediction of type 2 diabetes development is unclear. We determined the association of plasma BCAAs with type 2 diabetes risk in the prevention of renal and vascular end-stage disease (PREVEND) cohort. The BCAAs were measured by means of nuclear magnetic resonance spectroscopy. We evaluated the prospective associations of BCAAs with type 2 diabetes in 6244 subjects. The BCAAs were positively associated with HOMA-IR after multivariable adjustment (p < 0.0001). During median follow-up for 7.5 years, 301 cases of type 2 diabetes were ascertained. The Kaplan-Meier plot demonstrated that patients in the highest BCAA quartile presented a higher risk (p log-rank < 0.001). Cox regression analyses revealed a positive association between BCAA and type 2 diabetes; the hazard ratio (HR) for the highest quartile was 6.15 (95% CI: 4.08, 9.24, p < 0.0001). After adjustment for multiple clinical and laboratory variables, the association remained (HR 2.80 (95% CI: 1.72, 4.53), p < 0.0001). C-statistics, Net reclassification improvement, and −2 log likelihood were better after adding BCAAs to the traditional risk model (p = 0.01 to <0.001). In conclusions, high concentrations of BCAAs associate with insulin resistance and with increased risk of type 2 diabetes. This association is independent of multiple risk factors, HOMA-IR and β cell function.


2016 ◽  
Vol 31 (suppl_1) ◽  
pp. i214-i215
Author(s):  
Olha Zhenyukh ◽  
Esther Civantos ◽  
Enrique Bosch-Panadero ◽  
Concepción Peiró ◽  
Jesús Egido ◽  
...  

1991 ◽  
Vol 10 (2) ◽  
pp. 105-113 ◽  
Author(s):  
G. Marchesini ◽  
G.P. Bianchi ◽  
H. Vilstrup ◽  
M. Capelli ◽  
M. Zoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document