Frequency of Interruptions to Sitting Time: Benefits for Postprandial Metabolism in Type 2 Diabetes

Diabetes Care ◽  
2021 ◽  
pp. dc201410
Author(s):  
Ashleigh R. Homer ◽  
Frances C. Taylor ◽  
Paddy C. Dempsey ◽  
Michael J. Wheeler ◽  
Parneet Sethi ◽  
...  
2021 ◽  
Author(s):  
Ashleigh R. Homer ◽  
Frances C. Taylor ◽  
Paddy C. Dempsey ◽  
Michael J. Wheeler ◽  
Parneet Sethi ◽  
...  

<b>Purpose:</b> To determine whether interrupting sitting with brief bouts of simple resistance activities (SRAs) at different frequencies improves postprandial glucose, insulin and triglycerides in adults with medication-controlled type 2 diabetes (T2D). <p><b>Methods:</b> Participants [n=23, 10 females, Age: 62±8 y (mean±SD), BMI: 32.7 ± 3.5 kg<sup>.</sup>m<sup>-2</sup>] completed a three-armed randomized crossover trial (6-14 day washout): sitting uninterrupted for 7 h (SIT); sitting with 3-minute SRAs (half-squats, calf raises, gluteal contractions, and knee raises) every 30 minutes (SRA3); and, sitting with 6-minute SRAs every 60 minutes (SRA6). Net incremental areas under the curve (iAUC<sub>net</sub>) for glucose, insulin, and triglycerides were compared between conditions.</p> <p><b>Results:</b> <a>Glucose and insulin 7 h iAUC<sub>net </sub>were attenuated significantly during SRA6 (glucose 17.0 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 12.5, 21.4; insulin 1229 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 982, 1538) when compared to SIT (glucose 21.4 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 16.9, 25.8; insulin 1411 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 1128, 1767; <i>P</i> < 0.05), and compared to SRA3 ( for glucose only; 22.1 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 17.7, 26.6; <i>P </i>= 0.01) No significant differences in glucose or insulin iAUC<sub>net</sub> were observed comparing SRA3 and SIT. There was no statistically significant effect of condition on triglyceride iAUC<sub>net</sub>. </a></p> <p><b>Conclusion:</b> In adults with medication-controlled T2D, interrupting prolonged sitting with 6-minute SRAs every 60 minutes reduced postprandial glucose and insulin responses. Other frequencies of interruptions and potential longer-term benefits require examination to clarify clinical relevance. </p>


2021 ◽  
Author(s):  
Ashleigh R. Homer ◽  
Frances C. Taylor ◽  
Paddy C. Dempsey ◽  
Michael J. Wheeler ◽  
Parneet Sethi ◽  
...  

<b>Purpose:</b> To determine whether interrupting sitting with brief bouts of simple resistance activities (SRAs) at different frequencies improves postprandial glucose, insulin and triglycerides in adults with medication-controlled type 2 diabetes (T2D). <p><b>Methods:</b> Participants [n=23, 10 females, Age: 62±8 y (mean±SD), BMI: 32.7 ± 3.5 kg<sup>.</sup>m<sup>-2</sup>] completed a three-armed randomized crossover trial (6-14 day washout): sitting uninterrupted for 7 h (SIT); sitting with 3-minute SRAs (half-squats, calf raises, gluteal contractions, and knee raises) every 30 minutes (SRA3); and, sitting with 6-minute SRAs every 60 minutes (SRA6). Net incremental areas under the curve (iAUC<sub>net</sub>) for glucose, insulin, and triglycerides were compared between conditions.</p> <p><b>Results:</b> <a>Glucose and insulin 7 h iAUC<sub>net </sub>were attenuated significantly during SRA6 (glucose 17.0 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 12.5, 21.4; insulin 1229 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 982, 1538) when compared to SIT (glucose 21.4 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 16.9, 25.8; insulin 1411 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 1128, 1767; <i>P</i> < 0.05), and compared to SRA3 ( for glucose only; 22.1 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 17.7, 26.6; <i>P </i>= 0.01) No significant differences in glucose or insulin iAUC<sub>net</sub> were observed comparing SRA3 and SIT. There was no statistically significant effect of condition on triglyceride iAUC<sub>net</sub>. </a></p> <p><b>Conclusion:</b> In adults with medication-controlled T2D, interrupting prolonged sitting with 6-minute SRAs every 60 minutes reduced postprandial glucose and insulin responses. Other frequencies of interruptions and potential longer-term benefits require examination to clarify clinical relevance. </p>


2021 ◽  
Author(s):  
Ashleigh R. Homer ◽  
Frances C. Taylor ◽  
Paddy C. Dempsey ◽  
Michael J. Wheeler ◽  
Parneet Sethi ◽  
...  

<b>Purpose:</b> To determine whether interrupting sitting with brief bouts of simple resistance activities (SRAs) at different frequencies improves postprandial glucose, insulin and triglycerides in adults with medication-controlled type 2 diabetes (T2D). <p><b>Methods:</b> Participants [n=23, 10 females, Age: 62±8 y (mean±SD), BMI: 32.7 ± 3.5 kg<sup>.</sup>m<sup>-2</sup>] completed a three-armed randomized crossover trial (6-14 day washout): sitting uninterrupted for 7 h (SIT); sitting with 3-minute SRAs (half-squats, calf raises, gluteal contractions, and knee raises) every 30 minutes (SRA3); and, sitting with 6-minute SRAs every 60 minutes (SRA6). Net incremental areas under the curve (iAUC<sub>net</sub>) for glucose, insulin, and triglycerides were compared between conditions.</p> <p><b>Results:</b> <a>Glucose and insulin 7 h iAUC<sub>net </sub>were attenuated significantly during SRA6 (glucose 17.0 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 12.5, 21.4; insulin 1229 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 982, 1538) when compared to SIT (glucose 21.4 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 16.9, 25.8; insulin 1411 pmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 1128, 1767; <i>P</i> < 0.05), and compared to SRA3 ( for glucose only; 22.1 mmol<sup>.</sup>h<sup>.</sup>L<sup>-1</sup>, 95% CI 17.7, 26.6; <i>P </i>= 0.01) No significant differences in glucose or insulin iAUC<sub>net</sub> were observed comparing SRA3 and SIT. There was no statistically significant effect of condition on triglyceride iAUC<sub>net</sub>. </a></p> <p><b>Conclusion:</b> In adults with medication-controlled T2D, interrupting prolonged sitting with 6-minute SRAs every 60 minutes reduced postprandial glucose and insulin responses. Other frequencies of interruptions and potential longer-term benefits require examination to clarify clinical relevance. </p>


Author(s):  
Yuri A. Freire ◽  
Carlos A. Silva ◽  
Geovani A. D. Macêdo ◽  
Rodrigo A. V. Browne ◽  
Bruno M. de Oliveira ◽  
...  

We carried out three types of 2-hr experimental sessions with middle-aged and older adults with Type 2 diabetes in order to examine the acute effect of interrupting prolonged sitting with varying periods of standing on postprandial glycemia and blood pressure (BP): (a) prolonged sitting after breakfast; (b) standing for 10 min, 30 min after breakfast; and (c) standing for 20 min, 30 min after breakfast. Glucose and BP were assessed before and after breakfast. A generalized linear model revealed no significant differences for the incremental area under the curve of glucose between standing for 10 min, 30 min after breakfast, versus prolonged sitting after breakfast (β = –4.5 mg/dl/2 hr, 95% CI [–17.3, 8.4]) and standing for 20 min, 30 min after breakfast, versus prolonged sitting after breakfast (β = 0.9 mg/dl/2 hr, 95% CI [–11.9, 13.7]). There was no difference in area under the curve of systolic and diastolic BP among the sessions. Interrupting prolonged sitting time with 10 or 20 min of standing 30 min after breakfast does not attenuate postprandial glycemia or BP in middle-aged and older adults with Type 2 diabetes.


2018 ◽  
Vol 6 (1) ◽  
pp. e000605 ◽  
Author(s):  
Thamra S Alghafri ◽  
Saud Mohamed Alharthi ◽  
Yahya Al-Farsi ◽  
Abdul Hakeem Alrawahi ◽  
Elaine Bannerman ◽  
...  

ObjectiveThis study examined the impact of a multicomponent intervention to increase physical activity (PA) in adults with type 2 diabetes (T2D) in Oman.Research design and methodsThis is a cluster randomized controlled trial in eight primary health centers. Participants were physically inactive, aged ≥18 years, and with no contraindication to PA. Patients attending intervention health centers (n=4) received the ‘MOVEdiabetes’ intervention, which consisted of personalized, individual face-to-face consultations by dietitians. Pedometers and monthly telephone WhatsApp messages were also used. Patients attending comparison health centers received usual care. The primary outcome was change in PA [Metabolic Equivalent(MET).min/week] after 12 months assessed by the Global Physical Activity Questionnaire. The secondary outcomes were changes in daily step counts, sitting time, weight, body mass index, glycated hemoglobin, blood pressure and lipids.ResultsOf the 232 participants (59.1% female, mean (SD) age 44.2 (8.1) years), 75% completed the study. At 12 months, the mean change in MET.min/week was +631.3 (95% CI 369.4 to 893.2) in the intervention group (IG) vs +183.2 (95% CI 83.3 to 283.0) in the comparison group, with a significant between-group difference of +447.4 (95% CI 150.7 to 744.1). The odds of meeting PA recommendations were 1.9 times higher in the IG (95% CI 1.2 to 3.3). Significant between-group differences in favor of IG were detected for mean steps/day (+757, 95% CI 18 to 1531) and sitting time hours/ per day (−1.5, 95% CI −2.4 to −0.7). Clinical measures of systolic and diastolic blood pressure and triglycerides also showed significant intervention effects.Conclusions‘MOVEdiabetes’ was effective in increasing PA, the likelihood of meeting PA recommendations, and providing cardioprotective benefits in adults with T2D attending primary care.


2008 ◽  
Vol 158 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Søren S Lund ◽  
Lise Tarnow ◽  
Merete Frandsen ◽  
Ulla M Smidt ◽  
Oluf Pedersen ◽  
...  

ObjectiveNon-obese patients with type 2 diabetes (T2DM) are characterized by predominant defective insulin secretion. However, in non-obese T2DM patients, metformin, targeting insulin resistance, is non-inferior to the prandial insulin secretagogue, repaglinide, controlling overall glycaemia (HbA1c). Whether the same apply for postprandial glucose and lipid metabolism is unknown. Here, we compared the effect of metformin versus repaglinide on postprandial metabolism in non-obese T2DM patients.DesignSingle-centre, double-masked, double-dummy, crossover study during 2×4 months involving 96 non-obese (body mass index≤27 kg/m2) insulin-naïve T2DM patients. At enrolment, patients stopped prior oral hypoglycaemic agents therapies and after a 1-month run-in period on diet-only treatment, patients were randomized to repaglinide (2 mg) thrice daily followed by metformin (1 g) twice daily or vice versa each during 4 months with 1-month washout between interventions.MethodsPostprandial metabolism was evaluated by a standard test meal (3515 kJ; 54% fat, 13% protein and 33% carbohydrate) with blood sampling 0–6 h postprandially.ResultsFasting levels and total area under the curve (AUC) for plasma glucose, triglycerides and free fatty acids (FFA) changed equally between treatments. In contrast, fasting levels and AUC of total cholesterol, low-density lipoprotein (LDL) cholesterol, non-high-density lipoprotein (non-HDL) cholesterol and serum insulin were lower during metformin than repaglinide (mean (95% confidence intervals), LDL cholesterol difference metformin versus repaglinide: AUC: −0.17 mmol/l (−0.26; −0.08)). AUC differences remained significant after adjusting for fasting levels.ConclusionsIn non-obese T2DM patients, metformin reduced postprandial levels of glycaemia, triglycerides and FFA similarly compared to the prandial insulin secretagogue, repaglinide. Furthermore, metformin reduced fasting and postprandial cholesterolaemia and insulinaemia compared with repaglinide. These data support prescription of metformin as the preferred drug in non-obese patients with T2DM targeting fasting and postprandial glucose and lipid metabolism.


Sign in / Sign up

Export Citation Format

Share Document