Insulin Action in Cells Expressing Truncated or Kinase-Defective Insulin Receptors: Dissection of Multiple Hormone-Signaling Pathways

Diabetes Care ◽  
1990 ◽  
Vol 13 (3) ◽  
pp. 302-316 ◽  
Author(s):  
D. A. McClain
Diabetes ◽  
1985 ◽  
Vol 34 (4) ◽  
pp. 347-352 ◽  
Author(s):  
T. Yamanouchi ◽  
T. Tsushima ◽  
Y. Akanuma ◽  
M. Kasuga ◽  
H. Mizoguchi ◽  
...  

1993 ◽  
Vol 268 (27) ◽  
pp. 19998-20001
Author(s):  
B Draznin ◽  
L Chang ◽  
J.W. Leitner ◽  
Y Takata ◽  
J.M. Olefsky

Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Crescenzo Massaro ◽  
Elham Safadeh ◽  
Giulia Sgueglia ◽  
Hendrik G. Stunnenberg ◽  
Lucia Altucci ◽  
...  

Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.


2017 ◽  
Vol 114 (40) ◽  
pp. E8478-E8487 ◽  
Author(s):  
Masahiro Konishi ◽  
Masaji Sakaguchi ◽  
Samuel M. Lockhart ◽  
Weikang Cai ◽  
Mengyao Ella Li ◽  
...  

Insulin receptors (IRs) on endothelial cells may have a role in the regulation of transport of circulating insulin to its target tissues; however, how this impacts on insulin action in vivo is unclear. Using mice with endothelial-specific inactivation of the IR gene (EndoIRKO), we find that in response to systemic insulin stimulation, loss of endothelial IRs caused delayed onset of insulin signaling in skeletal muscle, brown fat, hypothalamus, hippocampus, and prefrontal cortex but not in liver or olfactory bulb. At the level of the brain, the delay of insulin signaling was associated with decreased levels of hypothalamic proopiomelanocortin, leading to increased food intake and obesity accompanied with hyperinsulinemia and hyperleptinemia. The loss of endothelial IRs also resulted in a delay in the acute hypoglycemic effect of systemic insulin administration and impaired glucose tolerance. In high-fat diet-treated mice, knockout of the endothelial IRs accelerated development of systemic insulin resistance but not food intake and obesity. Thus, IRs on endothelial cells have an important role in transendothelial insulin delivery in vivo which differentially regulates the kinetics of insulin signaling and insulin action in peripheral target tissues and different brain regions. Loss of this function predisposes animals to systemic insulin resistance, overeating, and obesity.


1982 ◽  
Vol 243 (1) ◽  
pp. E15-E30 ◽  
Author(s):  
J. M. Olefsky ◽  
O. G. Kolterman ◽  
J. A. Scarlett

Resistance to the action of insulin can result from a variety of causes, including the formation of abnormal insulin or proinsulin molecules, the presence of circulating antagonists to insulin or the insulin receptor, or defects in insulin action at the target tissue level. Defects of the latter type are characteristic of obesity and of noninsulin-dependent diabetes mellitus. Analysis of the nature of the insulin resistance in those disorders has been investigated in intact subjects with the use of the euglycemic glucose clamp technique, and both insulin receptors and insulin-mediated glucose metabolism have been studied in adipocytes and monocytes from affected individuals. In both conditions, the cause of insulin resistance is heterogeneous. In some, insulin resistance appears to be due to a defect in the insulin receptor, whereas others have a defect both in the receptor and at the postreceptor level. In both groups, more severe insulin resistance is due to the postreceptor lesion and is correctable with appropriate therapy.


1984 ◽  
Vol 64 (4) ◽  
pp. 1321-1378 ◽  
Author(s):  
S. Gammeltoft

During the last decade, earlier suggestions that insulin acts at the plasma membrane level via combination with receptors have been amply confirmed in studies of 125I-labeled insulin binding kinetics. Efforts have been devoted to the development of homogeneous, stable, and bioactive tracers, and a preparation of monoiodo[TyrA14]insulin showed 100-125% biological activity. The initially simple model of reversible, bimolecular, and noncooperative interaction between receptor and insulin has been revised to include the existence of at least three affinity states that may be linked to modulation of the biological response induced by the insulin-receptor complex. Thus negative cooperativity seems important in reducing oscillations of insulin action with variations in plasma insulin concentration, and formation of a high-affinity state or positive cooperativity may lead to desensitization of receptors. The kinetic phenomena suggest that receptor-binding affinity and function are actively regulated by insulin itself. At present the receptor model is purely functional and does not imply molecular mechanisms. However, recent advances in the analysis of receptor structure and biochemistry promise that the molecular equivalents of the kinetic phenomena may be elucidated in the near future. Furthermore the reaction between receptor and insulin is irreversible because of degradation of receptor-bound insulin, which may result in termination of the metabolic activation. Morphological and biochemical work suggests that internalization of the receptor-insulin complex from the plasma membrane transfers insulin to intracellular organelles like the lysosomes, the Golgi apparatus, or nucleus, where degradation by insulin protease takes place, whereas the receptor is recycled back to the membrane. Recent advances in the studies of biosynthesis and cellular dynamics of receptors indicate that intracellular processing and redistribution of binding sites may play a role in the mechanism of insulin action. Insulin receptors are widely distributed in all cell types, but evidence has accumulated that receptors show tissue and species variations in their functional properties regarding binding affinity, insulin specificity, cooperativity, and insulin degradation and in structural properties such as antigenic determinants and glycosidic composition. Perhaps these differences reflect cellular adaptations and variations in the physiological role of insulin.(ABSTRACT TRUNCATED AT 400 WORDS)


2008 ◽  
Vol 95 (5) ◽  
pp. 2575-2582 ◽  
Author(s):  
Urszula Golebiewska ◽  
Suzanne Scarlata
Keyword(s):  

2009 ◽  
Author(s):  
Gabriel Markov ◽  
Raquel Tavares ◽  
Chantal Dauphin-Villemant ◽  
Barbara Demeneix ◽  
Michael Baker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document