EET Analog Treatment Improves Insulin Signaling in a Genetic Mouse Model of Insulin Resistance

2021 ◽  
Author(s):  
Kakali Ghoshal ◽  
Xiyue Li ◽  
Dungeng Peng ◽  
John R. Falck ◽  
Raghunath Reddy Anugu ◽  
...  

We previously showed that global deletion of the cytochrome P450 epoxygenase <i>Cyp2c44</i>, a major epoxyeicosatrienoic acid (EET) producing enzyme in mice, leads to impaired hepatic insulin signaling resulting in insulin resistance. This finding led us to investigate whether administration of a water soluble EET analog restores insulin signaling <i>in vivo</i> in <i>Cyp2c44(-/-)</i> mice and investigated the underlying mechanisms by which this effect is exerted. <i>Cyp2c44(-/-)</i> mice treated with the analog EET-A for 4 weeks improved fasting glucose and glucose tolerance compared to <i>Cyp2c44(-/-)</i> mice treated with vehicle alone. This beneficial effect was accompanied by enhanced hepatic insulin signaling, decreased expression of gluconeogenic genes and increased expression of glycogenic genes. Mechanistically, we show that insulin-stimulated phosphorylation of insulin receptor β (IRβ) is impaired in primary <i>Cyp2c44(-/-) </i>hepatocytes and this can be restored by cotreatment with EET-A and insulin. Plasma membrane fractionations of livers indicated that EET-A enhances the retention of IRβ in membrane rich fractions, thus potentiating its activation. Altogether, EET analogs ameliorate insulin signaling in a genetic model of hepatic insulin resistance by stabilizing membrane-associated IRβ and potentiating insulin signaling.

2021 ◽  
Author(s):  
Kakali Ghoshal ◽  
Xiyue Li ◽  
Dungeng Peng ◽  
John R. Falck ◽  
Raghunath Reddy Anugu ◽  
...  

We previously showed that global deletion of the cytochrome P450 epoxygenase <i>Cyp2c44</i>, a major epoxyeicosatrienoic acid (EET) producing enzyme in mice, leads to impaired hepatic insulin signaling resulting in insulin resistance. This finding led us to investigate whether administration of a water soluble EET analog restores insulin signaling <i>in vivo</i> in <i>Cyp2c44(-/-)</i> mice and investigated the underlying mechanisms by which this effect is exerted. <i>Cyp2c44(-/-)</i> mice treated with the analog EET-A for 4 weeks improved fasting glucose and glucose tolerance compared to <i>Cyp2c44(-/-)</i> mice treated with vehicle alone. This beneficial effect was accompanied by enhanced hepatic insulin signaling, decreased expression of gluconeogenic genes and increased expression of glycogenic genes. Mechanistically, we show that insulin-stimulated phosphorylation of insulin receptor β (IRβ) is impaired in primary <i>Cyp2c44(-/-) </i>hepatocytes and this can be restored by cotreatment with EET-A and insulin. Plasma membrane fractionations of livers indicated that EET-A enhances the retention of IRβ in membrane rich fractions, thus potentiating its activation. Altogether, EET analogs ameliorate insulin signaling in a genetic model of hepatic insulin resistance by stabilizing membrane-associated IRβ and potentiating insulin signaling.


2015 ◽  
Vol 29 (4) ◽  
pp. 528-541 ◽  
Author(s):  
Jiali Liu ◽  
Huixia Li ◽  
Bo Zhou ◽  
Lin Xu ◽  
Xiaomin Kang ◽  
...  

Abstract Progranulin (PGRN) has recently emerged as an important regulator for glucose metabolism and insulin sensitivity. However, the underlying mechanisms of PGRN in the regulation of insulin sensitivity and autophagy remain elusive. In this study, we aimed to address the direct effects of PGRN in vivo and to evaluate the potential interaction of impaired insulin sensitivity and autophagic disorders in hepatic insulin resistance. We found that mice treated with PGRN for 21 days exhibited the impaired glucose tolerance and insulin tolerance and hepatic autophagy imbalance as well as defective insulin signaling. Furthermore, treatment of mice with TNF receptor (TNFR)-1 blocking peptide-Fc, a TNFR1 blocking peptide-Fc fusion protein to competitively block the interaction of PGRN and TNFR1, resulted in the restoration of systemic insulin sensitivity and the recovery of autophagy and insulin signaling in liver. Consistent with these findings in vivo, we also observed that PGRN treatment induced defective autophagy and impaired insulin signaling in hepatocytes, with such effects being drastically nullified by the addition of TNFR1 blocking peptide -Fc or TNFR1-small interference RNA via the TNFR1-nuclear factor-κB-dependent manner, indicating the causative role of PGRN in hepatic insulin resistance. In conclusion, our findings supported the notion that PGRN is a key regulator of hepatic insulin resistance and that PGRN may mediate its effects, at least in part, by inducing defective autophagy via TNFR1/nuclear factor-κB.


2003 ◽  
Vol 284 (1) ◽  
pp. G107-G115 ◽  
Author(s):  
Yuchen Ma ◽  
Ping Wang ◽  
Joachim F. Kuebler ◽  
Irshad H. Chaudry ◽  
Joseph L. Messina

Hyperglycemia is an early metabolic response to trauma and hemorrhage. The role of hepatic insulin resistance to the development of this hyperglycemia is not well understood. The aim of this study was to determine whether the liver becomes insulin resistant and to identify the particular hepatic insulin signaling pathways that may be compromised following trauma and hemorrhage. Male adult rats were bled to a mean arterial pressure of 40 mmHg and maintained at that pressure for 90 min followed by resuscitation with Ringer lactate. Data showed that trauma and hemorrhage rapidly induced profound hyperinsulinemia in combination with significant hyperglycemia, suggesting the development of insulin resistance. After trauma and hemorrhage, hepatic insulin signaling via the insulin-induced phosphatidylinositol 3 (PI3)-kinase-Akt pathway was abolished, whereas ERK1/2 signaling was relatively normal. The regulation (inhibition) of a hepatic-, insulin-, and the PI3-kinase-dependent gene, IGF binding protein-1, was also lost. The present study provides convincing evidence of a rapid onset hepatic insulin resistance following a combination of trauma and hemorrhage.


2011 ◽  
Vol 301 (3) ◽  
pp. G454-G463 ◽  
Author(s):  
Shaoning Jiang ◽  
Joseph L. Messina

Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH2-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver.


2020 ◽  
Vol 21 (11) ◽  
pp. 4182 ◽  
Author(s):  
Ariadna Pielok ◽  
Krzysztof Marycz

In the recent years, the prevalence of metabolic conditions such as type 2 Diabetes (T2D) and metabolic syndrome (MetS) raises. The impairment of liver metabolism resulting in hepatic insulin resistance is a common symptom and a critical step in the development of T2D and MetS. The liver plays a crucial role in maintaining glucose homeostasis. Hepatic insulin resistance can often be identified before other symptoms arrive; therefore, establishing methods for its early diagnosis would allow for the implementation of proper treatment in patients before the disease develops. Non-coding RNAs such as miRNAs (micro-RNA) and lncRNAs (long-non-coding RNA) are being recognized as promising novel biomarkers and therapeutic targets—especially due to their regulatory function. The dysregulation of miRNA and lncRNA activity has been reported in the livers of insulin-resistant patients. Many of those transcripts are involved in the regulation of the hepatic insulin signaling cascade. Furthermore, for several miRNAs (miR-802, miR-499-5p, and miR-122) and lncRNAs (H19 imprinted maternally expressed transcript (H19), maternally expressed gene 3 (MEG3), and metastasis associated lung adenocarcinoma transcript 1 (MALAT1)), circulating levels were altered in patients with prediabetes, T2D, and MetS. In the course of this review, the role of the aforementioned ncRNAs in hepatic insulin signaling cascade, as well as their potential application in diagnostics, is discussed. Overall, circulating ncRNAs are precise indicators of hepatic insulin resistance in the development of metabolic diseases and could be applied as early diagnostic and/or therapeutic tools in conditions associated with insulin resistance.


2020 ◽  
Vol 11 ◽  
Author(s):  
Han Cheng ◽  
Xiaokun Gang ◽  
Guangyu He ◽  
Yujia Liu ◽  
Yingxuan Wang ◽  
...  

Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what are known as mitochondria-associated ER membranes (MAMs). These associations are known to play an important role in maintaining cellular homeostasis. Impaired MAM signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence insulin signaling through different pathways, including those associated with Ca2+ signaling, lipid metabolism, mitochondrial function, ER stress responses, and inflammation. Altered MAM signaling is a common feature of insulin resistance in different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are key glucose-sensing regulators and have been proposed to be a hub for insulin signaling. Impaired MAM integrity has been reported to disrupt hepatic responses to changes in glucose availability during nutritional transition and to induce hepatic insulin resistance. Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In contrast, several studies have proposed that enhanced ER-mitochondria connections are detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus, given these contradictory results, the role played by the MAM in the regulation of hepatic insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress may be the primary pathway through which MAMs induce brain insulin resistance, especially in the hypothalamus. This review will discuss the possible mechanisms underlying MAM-associated insulin resistance as well as the therapeutic potential of targeting the MAM in the treatment of type 2 diabetes.


2014 ◽  
Vol 307 (1) ◽  
pp. E34-E46 ◽  
Author(s):  
Sandra Pereira ◽  
Edward Park ◽  
Yusaku Mori ◽  
C. Andrew Haber ◽  
Ping Han ◽  
...  

Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-l-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47phox (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling.


2020 ◽  
Vol 21 (22) ◽  
pp. 8675
Author(s):  
Asier Benito-Vicente ◽  
Kepa B. Uribe ◽  
Noemi Rotllan ◽  
Cristina M. Ramírez ◽  
Shifa Jebari-Benslaiman ◽  
...  

Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.


2007 ◽  
Vol 195 (2) ◽  
pp. 323-331 ◽  
Author(s):  
Edward Park ◽  
Victor Wong ◽  
Xinyu Guan ◽  
Andrei I Oprescu ◽  
Adria Giacca

Recent evidence indicates that inflammatory pathways are causally involved in insulin resistance. In particular, Iκ Bα kinase β (IKKβ ), which can impair insulin signaling directly via serine phosphorylation of insulin receptor substrates (IRS) and/or indirectly via induction of transcription of proinflammatory mediators, has been implicated in free fatty acid (FFA)-induced insulin resistance in skeletal muscle. However, it is unclear whether liver IKKβ activation plays a causal role in hepatic insulin resistance caused by acutely elevated FFA. In the present study, we wished to test the hypothesis that sodium salicylate, which inhibits IKKβ , prevents hepatic insulin resistance caused by short-term elevation of FFA. To do this, overnight-fasted Wistar rats were subject to 7-h i.v. infusion of either saline or Intralipid plus 20 U/ml heparin (IH; triglyceride emulsion that elevates FFA levels in vivo) with or without salicylate. Hyperinsulinemic–euglycemic clamp with tracer infusion was performed to assess insulin-induced stimulation of peripheral glucose utilization and suppression of endogenous glucose production (EGP). Infusion of IH markedly decreased (P < 0.05) insulin-induced stimulation of peripheral glucose utilization and suppression of EGP, which were completely prevented by salicylate co-infusion. Furthermore, salicylate reversed IH-induced 1) decrease in Iκ Bα content; 2) increase in serine phosphorylation of IRS-1 (Ser 307) and IRS-2 (Ser 233); 3) decrease in tyrosine phosphorylation of IRS-1 and IRS-2; and 4) decrease in serine 473-phosphorylated Akt in the liver. These results demonstrate that inhibition of IKKβ prevents FFA-induced impairment of hepatic insulin signaling, thus implicating IKKβ as a causal mediator of hepatic insulin resistance caused by acutely elevated plasma FFA.


Sign in / Sign up

Export Citation Format

Share Document