scholarly journals Bond Strength of Resin Cements to a Zirconia Ceramic with Different Surface Treatments

10.2341/08-80 ◽  
2009 ◽  
Vol 34 (3) ◽  
pp. 280-287 ◽  
Author(s):  
A. N. Cavalcanti ◽  
R. M. Foxton ◽  
T. F. Watson ◽  
M. T. Oliveira ◽  
M. Giannini ◽  
...  

Clinical Relevance Air abrasion and the use of special functional monomers that are able to chemically bond to zirconium dioxide can improve adhesion to a highly dense zirconia ceramic.

10.2341/07-86 ◽  
2008 ◽  
Vol 33 (3) ◽  
pp. 346-355 ◽  
Author(s):  
F. Monticelli ◽  
R. Osorio ◽  
F. T. Sadek ◽  
I. Radovic ◽  
M. Toledano ◽  
...  

Clinical Relevance Several surface treatments have been proposed for improving the bonding of resin cements or core materials to FRC (fiber-reinforced composite) posts. The possibility of combining chemical and micromechanical retention on post surface provides the most promising adhesion mechanism.


10.2341/08-12 ◽  
2008 ◽  
Vol 33 (6) ◽  
pp. 675-681 ◽  
Author(s):  
J. Lindgren ◽  
J. Smeds ◽  
G. Sjögren

Clinical Relevance Air abrasion and pretreatment with a metal primer seem to be an appropriate method for improving the bond strength of RelyX Unicem resin composite cement to hot isostatic pressed yttrium-oxide partially stabilized zirconia.


2021 ◽  
Vol 21 (7) ◽  
pp. 4046-4050
Author(s):  
Mun-Hwan Lee ◽  
Tae-Yub Kwon ◽  
In-Hye Kim ◽  
Young Kyung Kim

Self-assembled nano-layering resulting from interaction of the phosphate functional group of adhesive monomers with zirconia ceramic surface has been proposed. The purpose of this study was to investigate the bond strengths of two adhesive resin cements (Panavia F 2.0 and BisCem) containing phosphate monomers added with various concentrations (0.0, 1.0, 3.0, and 5.0 wt%) of triethylene glycol dimethacrylate (TEGDMA) to air-abraded zirconia ceramic. The polished/air-abraded zirconia plates (KaVo Everest® ZS-Ronde) were imaged using atomic force microscopy and the average surface roughness (Ra) values were calculated (n = 5). The surface energy parameters of the zirconia plates and the resin cements were calculated based on the extended Fowkes theory. All resin-bonded (diameter: 2.38 mm) zirconia specimens were stored in water at 37 °C for 24 h and then half of them additionally thermocycled 10,000 times before the shear bond strength (SBS) test (n = 10). Air-abrasion of zirconia surface significantly increased the γhS (hydrogen bonding component) value (p < 0.001), as well as greatly increasing the surface area (p < 0.001). For both resin cements, the γhS (dipole–dipole component) gradually increased with increasing incorporated TEGDMA concentrations, whereas the γhS gradually decreased. Overall, the addition of 3.0 wt% of TEGDMA consistently resulted in higher SBS values even after thermocycling. Under the tested condition, reducing the concentration of the adhesive monomers with phosphate functional group by adding the dimethacrylate monomer (up to 3.0 wt%) increased the bond strength between the resin cements and zirconia ceramic.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zohreh Moradi ◽  
Farnoosh Akbari ◽  
Sara Valizadeh

Aim. This study aimed to assess shear bond strength (SBS) of resin cement to zirconia ceramic with different surface treatments by using Single Bond Universal. Methods. In this in vitro study, 50 zirconia discs (2 × 6 mm) were divided into 5 groups of (I) sandblasting with silica-coated alumina (CoJet)  + silane + Single Bond 2, (II) sandblasting with CoJet + Single Bond Universal, (III) sandblasting with alumina + Single Bond Universal, (IV) sandblasting with alumina + Z-Prime Plus, and (V) Single Bond Universal with no surface treatment. Resin cement was applied in plastic tubes (3 × 5 mm2), and after 10,000 thermal cycles, the SBS was measured by a universal testing machine. The mode of failure was determined under a stereomicroscope at × 40 magnification. Data were analyzed using one-way ANOVA. Results. The maximum (6.56 ± 4.29 MPa) and minimum (1.94 ± 1.96 MPa) SBS values were noted in groups III and I, respectively. Group III had the highest frequency of mixed failure (60%). Group V had the maximum frequency of adhesive failure (100%). Conclusion. Single Bond Universal + sandblasting with alumina or silica-coated alumina particles is an acceptable method to provide a strong SBS between resin cement and zirconia.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7058
Author(s):  
Akane Chin ◽  
Masaomi Ikeda ◽  
Tomohiro Takagaki ◽  
Toru Nikaido ◽  
Alireza Sadr ◽  
...  

The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.


10.2341/06-61 ◽  
2007 ◽  
Vol 32 (3) ◽  
pp. 217-224 ◽  
Author(s):  
F. M. G. França ◽  
A. J. S. Santos ◽  
J. R. Lovadino

Clinical Relevance The adhesiveness of self-etching systems, used with aluminum oxide air abrasion to dentin, decreases over time.


2007 ◽  
Vol 330-332 ◽  
pp. 1365-1368
Author(s):  
W.H. Kim ◽  
H.J. Lee ◽  
Keun Woo Lee ◽  
Kwang Mahn Kim ◽  
Kyoung Nam Kim ◽  
...  

The purpose of this study was to evaluate the shear bond strength of composite resin to 4 different all-ceramic coping materials with 3 different surface treatments after thermocycling and without thermocycling. Three different surface treatments - sandblasting with 50 ㎛ alumina particles (AB); sandblasting with 50 ㎛ alumina particles and acid etching with 4% hydrofluoric acid (AE); sandblasting with 50 ㎛ alumina particles and 30 ㎛ alumina particles with tribochemical silica coating (SI) and silane application - were used on four different all-ceramic; Feldspatic ceramic (Duceram Plus); Lithium disilicate ceramic (IPS Empress2); Alumica ceramic (In-Ceram Alumina); Zirconia ceramic (Zi-Ceram) - substrates. Shear bond strength of restorative composite resin to substrate was tested after thermocycling and without thermocycling (n=10). Each specimen was subjected to a shear load at a crosshead speed of 2 ㎜/min until fracture. Two-way analysis of variance and Duncan multiple comparison test (α =0.05) were used to analyze the bond strength values. There were significant differences in the bond strengths for ceramic types (P<.001), surface treatments (P<.001), and thermocycling (P<.001). The Duncan analysis showed that the Si specimens had significantly higher bonding strengths than other specimens. The bond strength of composite resin decreased after thermocycling.


Sign in / Sign up

Export Citation Format

Share Document