Application of a Shell-Spring Model for the Optimization of Radial Tire Contour Using a Genetic Algorithm

2003 ◽  
Vol 31 (1) ◽  
pp. 39-63 ◽  
Author(s):  
G. Unnithan ◽  
R. KrishnaKumar ◽  
A. Prasad

Abstract Optimization gives a new facet to design and development of tires. A new approach to the tire profile optimization is proposed in this study. The optimization procedure is integrated with a simple shell-spring finite element model for faster evaluation. In the shell-spring model, the shell elements represent the tire carcass, whereas the tread is represented by the spring elements. This is applied for the optimization of the tire contour for better maneuverability. The genetic algorithm, an evolutionary optimization procedure that is robust and efficient in solving complex optimization problems, is chosen. A new tire contour is obtained that improves tire maneuverability by increasing the sidewall belt tension.

2013 ◽  
Vol 554-557 ◽  
pp. 484-491 ◽  
Author(s):  
Alexander S. Petrov ◽  
James A. Sherwood ◽  
Konstantine A. Fetfatsidis ◽  
Cynthia J. Mitchell

A hybrid finite element discrete mesoscopic approach is used to model the forming of composite parts using a unidirectional glass prepreg non-crimp fabric (NCF). The tensile behavior of the fabric is represented using 1-D beam elements, and the shearing behavior is captured using 2-D shell elements into an ABAQUS/Explicit finite element model via a user-defined material subroutine. The forming of a hemisphere is simulated using a finite element model of the fabric, and the results are compared to a thermostamped part as a demonstration of the capabilities of the used methodology. Forming simulations using a double-dome geometry, which has been used in an international benchmarking program, were then performed with the validated finite element model to explore the ability of the unidirectional fabric to accommodate the presence of interlaminate cabling.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Maha Ata Al-Furhud ◽  
Zakir Hussain Ahmed

The multiple travelling salesman problem (MTSP), an extension of the well-known travelling salesman problem (TSP), is studied here. In MTSP, starting from a depot, multiple salesmen require to visit all cities so that each city is required to be visited only once by one salesman only. It is NP-hard and is more complex than the usual TSP. So, exact optimal solutions can be obtained for smaller sized problem instances only. For large-sized problem instances, it is essential to apply heuristic algorithms, and amongst them, genetic algorithm is identified to be successfully deal with such complex optimization problems. So, we propose a hybrid genetic algorithm (HGA) that uses sequential constructive crossover, a local search approach along with an immigration technique to find high-quality solution to the MTSP. Then our proposed HGA is compared against some state-of-the-art algorithms by solving some TSPLIB symmetric instances of several sizes with various number of salesmen. Our experimental investigation demonstrates that the HGA is one of the best algorithms.


Author(s):  
Zhangfan Xu ◽  
Sisi Di ◽  
Song Pan ◽  
Lei Chen ◽  
Weiqing Huang

The rotor deformation of an ultrasonic motor is an important factor affecting its performance. However, little research focuses on the relationship between the rotor deformation and motor performance. This paper provides an approach to improve the ultrasonic motor's output properties by changing the rotor's size from the view of proper rotor deformation and better stress distribution on the interface. First, a thin shell structure is introduced to study the deformation of the rotor. A finite element model of the motor is built in COMSOL Multiphysics software for the contact analysis of the stress distribution. Then, the optimized ranges of parameters are determined by simulation. Frictional experiments are conducted to verify the feasibility of the rotor under the optimized size. Finally, the performance experiments of a stator corresponding to different sizes of rotor are carried out. The experimental results show that the speed, the power and the efficiency of the optimized rotor are all increase. These results prove the effectivity of the new approach to improving the performance of the ultrasonic motor.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xingjian Dong ◽  
Zhike Peng ◽  
Wenming Zhang ◽  
HongXing Hua ◽  
Guang Meng

To control vibration of a piezoelectric smart structure, a controller is usually designed based on a reduced order model (ROM) of the system. When such a ROM based controller operates in closed loop with the actual structure, spillover phenomenon occurs because the unmodeled dynamics, which are not included in ROM, will be excited. In this paper, a new approach aiming at investigating spillover effects in ANSYS software is presented. By using the ANSYS parametric design language (APDL), the ROM based controller is integrated into finite element model to provide an accurate representation of what will happen when the controller is connected to the real plant. Therefore, the issues of spillover effects can be addressed in the closed loop simulation. Numerical examples are presented for investigating spillover effects of a cantilever piezoelectric plate subjected to various types of loading. The importance of considering spillover effects in closed loop simulation of piezoelectric smart structures is demonstrated. Moreover, the present study may provide an efficient method especially beneficial for preliminary design of piezoelectric smart structure to evaluate the performance of candidate control laws in finite element environment considering spillover effects.


Author(s):  
Newell Moser ◽  
David Pritchet ◽  
Huaqing Ren ◽  
Kornel F. Ehmann ◽  
Jian Cao

Double-sided incremental forming (DSIF) is a subcategory of general incremental sheet forming (ISF), and uses tools above and below a sheet of metal to squeeze and bend the material into freeform geometries. Due to the relatively slow nature of the DSIF process and the necessity to capture through-thickness mechanics, typical finite element simulations require weeks or even months to finish. In this study, an explicit finite element simulation framework was developed in LS-DYNA using fully integrated shell elements in an effort to lower the typical simulation time while still capturing the mechanics of DSIF. The tool speed, mesh size, element type, and amount of mass scaling were each varied in order to achieve a fast simulation with minimal sacrifice regarding accuracy. Using 8 CPUs, the finalized DSIF model simulated a funnel toolpath in just one day. Experimental strains, forces, and overall geometry were used to verify the simulation. While the simulation forces tended to be high, the trends were still well captured by the simulation model. The thickness and in-plane strains were found to be in good agreement with the experiments.


2014 ◽  
Vol 703 ◽  
pp. 385-389 ◽  
Author(s):  
Xiao Bing Dang ◽  
Kai He ◽  
Jiu Hua Li ◽  
Qi Yang Zuo ◽  
Ru Xu Du

This paper is aimed at investigating the parameter effects on dynamic crushing behavior of staggered Kelvin cellular metal using finite element method. The geometrical characteristics of the staggered cellular structure were analyzed and the finite element model was constructed using shell elements. A full factorial Design of Experiment simulation was carried out and four individual factors including two structure characteristics of the cellular metals and two mechanical parameters of the base material were selected, namely cell edge length, cell wall thickness, yield stress and tangent modulus. Their single and interaction effects on plateau stress, densification strain and densification strain energy were mainly researched. From the results it could be seen that the structure characteristics were a little more important than the base material properties for aluminum staggered Kelvin cellular metal.


2014 ◽  
Vol 980 ◽  
pp. 81-85 ◽  
Author(s):  
Kaoua Sid-Ali ◽  
Mesbah Amar ◽  
Salah Boutaleb ◽  
Krimo Azouaoui

This paper outlines a finite element procedure for predicting the mechanical behaviour under bending of sandwich panels consisting of aluminium skins and aluminium honeycomb core. To achieve a rapid and accurate stress analysis, the sandwich panels have been modelled using shell elements for the skins and the core. Sandwich panels were modelled by a three-dimensional finite element model implemented in Abaqus/Standard. By this model the influence of the components on the behaviour of the sandwich panel under bending load was evaluated. Numerical characterization of the sandwich structure, is confronted to both experimental and homogenization technique results.


Author(s):  
Mark O. Neal

This paper describes a procedure to optimize the front structure of a vehicle for improved performance in the leg impact portion of pedestrian safety regulations proposed by the European Enhanced Vehicle-Safety Committee (EEVC). The first step in this procedure was to perform a simulation of the EEVC leg impact test with detailed finite element models of the EEVC leg impactor and the baseline design of a vehicle front structure. Next, a simplified, parametric finite element model of the vehicle front structure was used with the leg impactor model to simulate the leg impact test, and the results were correlated to the detailed finite element model and the test results. The leg impact simulation with the parametric vehicle model was then incorporated into an optimization procedure developed within the optimization code ISIGHT. In this procedure the parameters that controlled the vehicle geometry and structural stiffness in the simplified model were altered by ISIGHT to improve performance in the leg impact test.


Sign in / Sign up

Export Citation Format

Share Document