Tire Testing for Rolling Resistance and Fuel Economy

1974 ◽  
Vol 2 (4) ◽  
pp. 286-311 ◽  
Author(s):  
D. A. Glemming ◽  
P. A. Bowers

Abstract The rolling resistance of tires and the fundamental factors influencing rolling resistance during laboratory and road testing are discussed. Test methodologies for vehicle fuel consumption, vehicle coast-down, rolling resistance trailer measurements, and laboratory testing are described. This paper is confined to passenger tire characteristics and deals primarily with test techniques, although some observations are made regarding tire construction, the effect of environment, comparison of test methods, test parameter effects, and the interrelationships between various test modes.

2014 ◽  
Vol 1070-1072 ◽  
pp. 392-397
Author(s):  
Jun Hui Xu ◽  
Ming Qiu Gao ◽  
Ji Qiang Gao ◽  
Xiang Bao

In the background of the main technologies of fuel economy in automobiles developed to a certain stage, it is necessary to reduce fuel consumption and increase the engine efficiency by developing other auxiliary technologies such as improving the ratio of pure energy drive, low rolling resistance tires, tire pressure monitoring system and gear shift indicators (GSI). This article introduces the principle of GSI, analyses how GSI works in improving engine efficiency, and then evaluates the method for determination of the relative saving rate of fuel consumption, which method was introduced in the EU regulation EC No. 65/2012.


A new philosophy, relating to both rolling resistance (fuel consumption) and wet grip (safety), has been developed, based on measurements of the dynamic properties of tread compounds in the laboratory under conditions approaching those existing at the tyre-road surface interface under both rolling and wet sliding conditions. The generally accepted wet grip theories used throughout the tyre industry lead to the conclusion that when wet grip is improved, there is an increase in rolling resistance. The new philosophy enabled a tailor-made polymer to be developed that broke away from convention and gave a reduced rolling resistance while improving wet grip. Extensive laboratory and vehicle testing was performed on tyres made with the new polymer, to verify the new hypothesis and to ensure that the polymer was a commercial proposition before it was officially announced and introduced into commercial tyres during late 1981.


2013 ◽  
Vol 16 (1) ◽  
pp. 18-21 ◽  
Author(s):  
Mário Szabó ◽  
Radoslav Majdan ◽  
Zdenko Tkáč ◽  
Rastislav Čápora ◽  
Ľubomír Hujo

Abstract This paper deals with the importance of fuel economy in road freight transport. It provides the calculation of financial savings for fuel savings of 0.5 l per 100 km. In the subsequent part, some factors that influence the fuel consumption are specified, e.g. aerodynamic resistance, rolling resistance, and tyre inflation pressure. The effect of tyre inflation pressure on fuel economy has been tested on four selected towing vehicles. Based on the results obtained, it can be stated that tyre pressure has a great impact on fuel consumption. A one-bar pressure reduction of tyres can increase the fuel consumption by 0.5 l per 100 km.


2018 ◽  
Vol 46 (2) ◽  
pp. 93-104 ◽  
Author(s):  
L. J. Bachman

ABSTRACT Data from air cavity thermistors, tire pressure–monitoring systems (TPMS), and SAE J1269 rolling resistance tests were analyzed to evaluate the significance of changes in tire pressure on rolling resistance during fuel economy tests of class 8 tractor trailers. Thermistor data show that air cavity temperatures vary, with the main increase happening during the warm-up run and measurable cooling during the fuel measurement breaks between runs. Inflation pressure also increases by 50–70 kPa during the warm-up run, but once the tire has warmed up, the pressure is more stable, rarely varying by more than 20 kPa during a test run. Results of SAE J1269 rolling resistance tests allow estimation of rolling resistance force for any specified load and inflation pressure. Using the test weight of the truck, the rolling resistance force was estimated for inflation pressures ranging from 550 to 860 kPa. The relationship between the inflation pressure and rolling resistance was roughly linear. The relationship was then used to estimate changes in fuel consumption due to changes in inflation pressure normalized to the cold inflation pressure. For each change of relative inflation pressure of 5%, rolling resistance would change by about 1%. Using a common return factor of a 1% change in fuel consumption for every 5% change in rolling resistance, a change in relative inflation pressure of 5% would result in a change of fuel consumption of about 0.2%. The precision of the J1321 fuel economy tests was measured to be plus or minus about 1%. This suggests that the warm-up run provided for the test method stabilizes the tire pressure and rolling resistance and that interference due to changes in rolling resistance during a test run or between runs is a concern only for tests that measure small changes in fuel consumption. While the results obtained here are used to assess the effect of inflation pressure on the SAE J1321 test and apply only to the particular tires tested, the method of analysis may be useful in the assessment of the effect of over- or underinflated tires on fuel consumption in the wider long-haul trucking fleet.


1975 ◽  
Vol 3 (1) ◽  
pp. 3-15 ◽  
Author(s):  
W. B. Crum ◽  
R. G. McNall

Abstract Variation in the effects of tire rolling resistance on passenger car fuel consumption seldom exceeds ten percent. The definition of these effects is therefore a problem in experimental design and control, measurement precision, and careful accounting for uncontrolled variables. A rolling resistance test conducted on a road surface with a fully instrumented tire test trailer is described and the test results presented. Fuel “economy” test techniques are discussed with emphasis on precautions and recommendations for reliable testing and test results presented. When aerodynamic drag is taken into account with wind tunnel measurements, the results are suggestive of engine characteristic curves.


2013 ◽  
Vol 364 ◽  
pp. 167-171
Author(s):  
Jing Tong ◽  
Jian Zhao

With the growth of vehicle ownership, a great quantity of yearly oil import is necessary in China. Because of the energy shortage, people are forced to pay more and more attention to the automobile fuel economy, and government and automotive manufactories are forced to pursue the ways to reduce the vehicle fuel consumption. As the fuel economy has to be evaluated by the measurement of fuel consumption test, the accuracies of these tests are also attracted more and more attention. In this paper, various factors influencing the constant speed fuel consumption are analyzed. Furthermore, a feasible evaluation method of the measurement uncertainty is proposed, and the expanded uncertainty of the test results is calculated using this method.


2007 ◽  
Vol 35 (2) ◽  
pp. 94-117 ◽  
Author(s):  
James A. Popio ◽  
John R. Luchini

Abstract This study compares data from the two Society of Automotive Engineers test methods for rolling resistance: J-2452 (Stepwise Coast-Down) and J-1269 (Equilibrium) steady state. The ability of the two methods to evaluate tires was examined by collecting data for 12 tires. The data were analyzed and the data showed that the two methods ranked the tires the same after the data were regressed and the rolling resistance magnitude was calculated at the Standard Reference Condition. In addition, analysis of the two methods using this matched set of testing provided an opportunity to evaluate each of these test standards against the other. It was observed that each test has merits absent from the other.


2015 ◽  
Vol 43 (2) ◽  
pp. 144-162
Author(s):  
Al Cohn

ABSTRACT Maintaining proper tire inflation is the number one issue facing commercial fleets today. Common, slow-leaking tread area punctures along with leaking valve stems and osmosis through the tire casing lead to tire underinflation with a subsequent loss in fuel economy, reduction in retreadability, tread wear loss, irregular wear, and increase in tire-related roadside service calls. Commercial truck tires are the highest maintenance cost for fleets second only to fuel. This article will examine tire footprint analysis, rolling resistance data, and the effect on vehicle fuel economy from tires run at a variety of underinflated, overinflated, and recommended tire pressures. This analysis will also include the tire footprint impact by running tires on both fully loaded and unloaded trailers. The footprint analysis addresses both standard dual tires (295/75R22.5) along with the newer increasingly popular wide-base tire size 445/50R22.5.


Sign in / Sign up

Export Citation Format

Share Document