Investigation of the Microscopic Viscoelastic Property for Cross-linked Polymer Network by Molecular Dynamics Simulation

2011 ◽  
Vol 39 (1) ◽  
pp. 44-58 ◽  
Author(s):  
Y. Masumoto ◽  
Y. Iida

Abstract The purpose of this work is to develop a new analytical method for simulating the microscopic mechanical property of the cross-linked polymer system using the coarse-grained molecular dynamics simulation. This new analytical method will be utilized for the molecular designing of the tire rubber compound to improve the tire performances such as rolling resistance and wet traction. First, we evaluate the microscopic dynamic viscoelastic properties of the cross-linked polymer using coarse-grained molecular dynamics simulation. This simulation has been conducted by the coarse-grained molecular dynamics program in the OCTA) (http://octa.jp/). To simplify the problem, we employ the bead-spring model, in which a sequence of beads connected by springs denotes a polymer chain. The linear polymer chains that are cross-linked by the cross-linking agents express the three-dimensional cross-linked polymer network. In order to obtain the microscopic dynamic viscoelastic properties, oscillatory deformation is applied to the simulation cell. By applying the time-temperature reduction law to this simulation result, we can evaluate the dynamic viscoelastic properties in the wide deformational frequency range including the rubbery state. Then, the stress is separated into the nonbonding stress and the bonding stress. We confirm that the contribution of the nonbonding stress is larger at lower temperatures. On the other hand, the contribution of the bonding stress is larger at higher temperatures. Finally, analyzing a change of microscopic structure in dynamic oscillatory deformation, we determine that the temperature/frequency dependence of bond stress response to a dynamic oscillatory deformation depends on the temperature dependence of the average bond length in the equilibrium structure and the temperature/frequency dependence of bond orientation. We show that our simulation is a useful tool for studying the microscopic properties of a cross-linked polymer.

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 964 ◽  
Author(s):  
Zhiyu Zhang ◽  
Guanyi Hou ◽  
Jianxiang Shen ◽  
Jun Liu ◽  
Yangyang Gao ◽  
...  

Through coarse-grained molecular dynamics simulation, we have successfully designed the chemically cross-linked (fixed junction) and the slide-ring (SR) systems. Firstly, we examine the dynamic properties such as the mean-square displacement, the bond, and the end-to-end autocorrelation functions as a function of the cross-linking density, consistently pointing out that the SR system exhibits much lower mobility compared with the fixed junction one at the same cross-linking density. This is further validated by a relatively higher glass transition temperature for the SR system compared with that of the fixed junction one. Then, we calculated the effect of the cross-linking density on the stretch-recovery behavior for the SR and fixed junction systems. Although the chain orientation of the SR system is higher than that of the fixed-junction system, the tensile stress is smaller than the latter. We infer that much greater chain sliding can occur during the stretch, because the movable ring structure homogeneously sustains the external force of the SR system, which, therefore, leads to much larger permanent set and higher hysteresis during the recovery process compared with the fixed-junction one. Based on the stretch-recovery behavior for various cross-linking densities, we obtain the change of the hysteresis loss, which is larger for the SR system than that of the fixed junction system. Lastly, we note that the relatively bigger compressive stress for the SR system results from the aggregation of the rigid rings compared with the fixed junction system. In general, compared with the traditionally cross-linked system, a deep molecular-level insight into the slide-ring polymer network is offered and thus is believed to provide some guidance to the design and preparation of the slide-ring polymer network with both good mechanical and damping properties.


2019 ◽  
Vol 52 (10) ◽  
pp. 3787-3793 ◽  
Author(s):  
Yusuke Yasuda ◽  
Masatoshi Toda ◽  
Koichi Mayumi ◽  
Hideaki Yokoyama ◽  
Hiroshi Morita ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (23) ◽  
pp. 13008-13017 ◽  
Author(s):  
Jun Liu ◽  
Haixiao Wan ◽  
Huanhuan Zhou ◽  
Yancong Feng ◽  
Liqun Zhang ◽  
...  

The formation mechanism of the bound rubber in elastomer nanocomposites using the coarse-grained molecular-dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document