Multiple-pulse skin damage thresholds at 1070 NM

Author(s):  
Michael P. De Lisi ◽  
Adam R. Boretsky ◽  
Morgan S. Schmidt ◽  
Amanda M. Peterson ◽  
Gary D. Noojin ◽  
...  
Keyword(s):  
Author(s):  
Michael P. DeLisi ◽  
Kurt J. Schuster ◽  
Gary D. Noojin ◽  
Amanda J. Tijerina ◽  
Aurora D. Shingledecker ◽  
...  

Author(s):  
Shingo Yasuoka ◽  
Jiro Takata ◽  
Yoshiharu Karube ◽  
Eiko Katoh ◽  
Toshi Tsuzuki ◽  
...  

1979 ◽  
Vol 41 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Masakazu ASAHI ◽  
Harukuni URABE

2020 ◽  
Vol 26 ◽  
Author(s):  
Drashti Patel ◽  
Bappaditya Chatterjee

: Transfersomes are bilayer vesicles composed of phospholipid and edge-activators, which are mostly surfactant. Transfersomes based drug delivery system has gained a lot of interest of the pharmaceutical researchers for their ability to improve drug penetration and permeation through the skin. Transdermal drug delivery via transfersomes has the potential to overcome the challenge of low systemic availability. However, this complex vesicular system has different issues to consider for developing a successful transdermal delivery system. One of the major ingredients, phospholipid has versatile sources and variable effect on the vesicle size and drug entrapment in transfersomes. The other one termed as edge-activator or surfactant has some crucial consideration of skin damage and toxicity depending upon its type and concentration. A complex interaction between type and concentration of phospholipid and surfactant was observed, which affect the physicochemical properties of transfersomes. This review focuses on the practical factors related to these two major ingredients such as phospholipid and surfactant. The origin, purity, desired concentration, the susceptibility of degradation, etc. are the important factors for selecting phospholipid. Regarding surfactants, the major aspects are type and desired concentration. A successful development of transfersomes based drug delivery system depends on the proper considerations of these factors and practical aspects.


2019 ◽  
Vol 12 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Dheyauldeen Shabeeb ◽  
Masoud Najafi ◽  
Ahmed Eleojo Musa ◽  
Mansoor Keshavarz ◽  
Alireza Shirazi ◽  
...  

Background:Radiotherapy is one of the treatment methods for cancers using ionizing radiations. About 70% of cancer patients undergo radiotherapy. Radiation effect on the skin is one of the main complications of radiotherapy and dose limiting factor. To ameliorate this complication, we used melatonin as a radioprotective agent due to its antioxidant and anti-inflammatory effects, free radical scavenging, improving overall survival after irradiation as well as minimizing the degree of DNA damage and frequency of chromosomal abrasions.Methods:Sixty male Wistar rats were randomly assigned to 4 groups: control (C), melatonin (M), radiation (R) and melatonin + radiation (MR). A single dose of 30 Gy gamma radiation was exposed to the right hind legs of the rats while 40 mg/ml of melatonin was administered 30 minutes before irradiation and 2 mg/ml once daily in the afternoon for one month till the date of rat’s sacrifice. Five rats from each group were sacrificed 4, 12 and 20 weeks after irradiation. Afterwards, their exposed skin tissues were examined histologically and biochemically.Results:In biochemical analysis, we found that malondialdehyde (MDA) levels significantly increased in R group and decreased significantly in M and MR groups after 4, 12, and 20 weeks, whereas catalase (CAT) and superoxide dismutase (SOD) activities decreased in the R group and increased in M and MR groups during the same time periods compared with the C group (p<0.05). Histopathological examination found there were statistically significant differences between R group compared with the C and M groups for the three different time periods (p<0.005, p<0.004 and p<0.004) respectively, while R group differed significantly with MR group (p<0.013). No significant differences were observed between C and M compared with MR group (p>0.05) at 4 and 20 weeks except for inflammation and hair follicle atrophy, while there were significant effects at 12 weeks (p<0.05).Conclusion:Melatonin can be successfully used for the prevention and treatment of radiation-induced skin injury. We recommend the use of melatonin in optimal and safe doses. These doses should be administered over a long period of time for effective radioprotection and amelioration of skin damages as well as improving the therapeutic ratio of radiotherapy.


2020 ◽  
Vol 295 (8) ◽  
pp. 2483-2494
Author(s):  
Hiroyuki Yoshida ◽  
Mika Aoki ◽  
Aya Komiya ◽  
Yoko Endo ◽  
Keigo Kawabata ◽  
...  

The immune-regulatory compound histamine is involved in the metabolism of the essential skin component hyaluronan (HA). We previously reported that histamine up-regulates the expression of HYBID (hyaluronan-binding protein involved in hyaluronan depolymerization, also called CEMIP or KIAA1199), which plays a key role in HA degradation. However, no information is available about histamine's effects on HA synthase (HAS) expression, the molecular sizes of HA species produced, and histamine receptors and their signaling pathways in skin fibroblasts. Moreover, histamine's effects on photoaged skin remain elusive. Here, we show that histamine increases HA degradation by up-regulating HYBID and down-regulating HAS2 in human skin fibroblasts in a dose- and time-dependent manner and thereby decreases the total amounts and sizes of newly produced HA. Histamine H1 blocker abrogated the histamine effects on HYBID up-regulation, HAS2 suppression, and HA degradation. Histamine H1 agonist exhibited effects on HA levels, composition, and breakdown similar to those of histamine. Of note, blockade of protein kinase Cδ or PI3K–Akt signaling abolished histamine-mediated HYBID stimulation and HAS2 suppression, respectively. Immunohistochemical experiments revealed a significant ∼2-fold increase in tryptase-positive mast cells in photoaged skin, where HYBID and HAS2 expression levels were increased and decreased, respectively, compared with photoprotected skin. These results indicate that histamine controls HA metabolism by up-regulating HYBID and down-regulating HAS2 via distinct signaling pathways downstream of histamine receptor H1. They further suggest that histamine may contribute to photoaged skin damage by skewing HA metabolism toward degradation.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 311
Author(s):  
Indu Choudhary ◽  
Duhyeon Hwang ◽  
Jinho Chae ◽  
Wonduk Yoon ◽  
Changkeun Kang ◽  
...  

Jellyfish venom is well known for its local skin toxicities and various lethal accidents. The main symptoms of local jellyfish envenomation include skin lesions, burning, prickling, stinging pain, red, brown, or purplish tracks on the skin, itching, and swelling, leading to dermonecrosis and scar formation. However, the molecular mechanism behind the action of jellyfish venom on human skin cells is rarely understood. In the present study, we have treated the human HaCaT keratinocyte with Nemopilema nomurai jellyfish venom (NnV) to study detailed mechanisms of actions behind the skin symptoms after jellyfish envenomation. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/MS), cellular changes at proteome level were examined. The treatment of NnV resulted in the decrease of HaCaT cell viability in a concentration-dependent manner. Using NnV (at IC50), the proteome level alterations were determined at 12 h and 24 h after the venom treatment. Briefly, 70 protein spots with significant quantitative changes were picked from the gels for MALDI-TOF/MS. In total, 44 differentially abundant proteins were successfully identified, among which 19 proteins were increased, whereas 25 proteins were decreased in the abundance levels comparing with their respective control spots. DAPs involved in cell survival and development (e.g., Plasminogen, Vinculin, EMILIN-1, Basonuclin2, Focal adhesion kinase 1, FAM83B, Peroxisome proliferator-activated receptor-gamma co-activator 1-alpha) decreased their expression, whereas stress or immune response-related proteins (e.g., Toll-like receptor 4, Aminopeptidase N, MKL/Myocardin-like protein 1, hypoxia up-regulated protein 1, Heat shock protein 105 kDa, Ephrin type-A receptor 1, with some protease (or peptidase) enzymes) were up-regulated. In conclusion, the present findings may exhibit some possible key players during skin damage and suggest therapeutic strategies for preventing jellyfish envenomation.


Sign in / Sign up

Export Citation Format

Share Document