Development of the laser spot welded stainless steel panel for vehicle body

Author(s):  
Masashi Oikawa ◽  
Katsuhiro Minamida ◽  
Hiroyuki Kumehara
2008 ◽  
Vol 74 (12) ◽  
pp. 1287-1291
Author(s):  
Masashi OIKAWA ◽  
Yuichi YOSHIDA ◽  
Noriyuki SUZUKI ◽  
Katsuhiro MINAMIDA ◽  
Hiroyuki KUMEHARA

2006 ◽  
Vol 306-308 ◽  
pp. 899-904
Author(s):  
Dong Ho Bae ◽  
Won Seok Jung ◽  
J.B. Heo

An effective way to reduce the weight of vehicle body seems to be application of new materials, and such trend is remarkable. Among the various materials for automobile body, stainless steel sheets and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life fatigue design criteria for body structure, it is necessary to assess spot weldability and fatigue strength of spot welded lap joints fabricated under optimized spot welding condition. In this paper, spot weldability of stainless steel sheets, STS301L and STS304L, and cold rolled steel sheets, SPCC and SPCD. Fatigue strength of lap joints spot welded between similar and dissimilar materials were also assessed.


2005 ◽  
Vol 297-300 ◽  
pp. 2883-2887 ◽  
Author(s):  
Dong Ho Bae ◽  
Won Seok Jung ◽  
J.B. Heo

An effective way to reduce the weight of vehicle body seems to be application of new materials, and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheets and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life fatigue design criteria for body structure, it is necessary to assess spot weldability and fatigue strength of spot welded lap joints fabricated under optimized spot welding condition. In this paper, spot weldability of stainless steel sheets, STS304L and STS316L, and cold rolled steel sheets, SPCC and SPCD. Fatigue strength of lap joints spot welded between similar and dissimilar materials were also assessed.


2020 ◽  
Vol 39 (1) ◽  
pp. 317-327
Author(s):  
Vivek D. Kalyankar ◽  
Gautam P. Chudasama

AbstractIn this article, the influence of electrode tip diameter is investigated for spot welded duplex stainless steel (DSS). Electrode tip diameter and welding current are considered as the major influencing parameters and their values are varied within the feasible range, suitable for 0.8 mm thick sheet, whereas other important parameters such as welding time and electrode force are kept constant. DSS with the chosen thickness range is now becoming a useful material in automotive body-in-white applications and in future it will become one of the key materials replacing the existing materials and hence research outcome of the present work may be beneficial from application view point. In this work, the spot welding quality is inspected through metallurgical aspects (microstructure and microhardness), physical aspects (nugget diameter and electrode indentation), mechanical performance (tensile shear strength [TSS]) and failure mode. The obtained result shows that smaller electrode tip diameter limits nugget diameter due to expulsion phenomena and increases electrode indentation due to higher current intensity. TSS decreases with increase in electrode tip diameter for the same welding current but maximum TSS obtained for particular electrode tip diameter increases with increase in electrode tip diameter up to a specific limit and then it remains constant.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881101 ◽  
Author(s):  
Yaliang Liu ◽  
Yibo Sun ◽  
Yang Sun ◽  
Hongji Xu ◽  
Xinhua Yang

Spot welding of dissimilar materials can utilize the respective advantage comprehensively, of which reliable prediction of fatigue life is the key issue in the structure design and service process. Taking into account almost all the complex factors that have effects on the fatigue behavior such as load level, thickness, welding nugget diameter, vibrational frequency, and material properties, this article proposed an energy dissipation-based method that is able to predict the fatigue life for spot-welded dissimilar materials rapidly. In order to obtain the temperature gradient, the temperature variations of four-group spot-welded joint of SUS301 L-DLT stainless steel and Q235 carbon steel during high-cycle fatigue tests were monitored by thermal infrared scanner. Specifically, temperature variation disciplines of specimen surface were divided into four stages: temperature increase, temperature decrease, continuous steady increase in temperature, and ultimate drop after the fracture. The material constant C that a spot-welded joint of dissimilar material needs to reach fracture is 0.05425°C·mm3. When the specimen was applied higher than the fatigue limit, the highest error between experimental values and predicted values is 18.90%, and others are lower than 10%. Therefore, a good agreement was achieved in fatigue life prediction between the new method and the validation test results.


2016 ◽  
Vol 35 (2) ◽  
pp. 145-151
Author(s):  
R. K. Gupta ◽  
V. Anil Kumar ◽  
Paul G. Panicker

AbstractJoining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.


Sign in / Sign up

Export Citation Format

Share Document