Determination of optimal focal position during CO2 laser cutting of MDFB thick sheets to reduce side kerf curvature

Author(s):  
Francisco Letellier ◽  
Jorge Ramos-Grez
Author(s):  
Marcus D. Benedetto ◽  
Donald E. Antonson ◽  
Lawrence M. Elson ◽  
Londa D. Reid-Sanders ◽  
Jacquelyn I. Williams

1993 ◽  
Vol 62 (2) ◽  
pp. 68-72
Author(s):  
Toshiaki Miyazaki ◽  
Hideyuki Shinonaga
Keyword(s):  

2015 ◽  
Vol 88 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Shib Shankar Banerjee ◽  
Anil K. Bhowmick

ABSTRACT The application of the low-power CO2 laser-cutting process to fluoroelastomer (FKM), polyamide 6 (PA6), PA6/FKM thermoplastic elastomers (TPEs), and their thermoplastic vulcanizate (TPV) is reported. The main laser process parameters studied were laser power, cutting speed, and material thickness. The value of the top and bottom widths of the slit that were formed during laser cutting (kerf width), melted transverse area, and melted volume per unit time were measured and analyzed. Interestingly, TPE showed a smaller melted area and melted volume per unit time when compared with those values with PA6. Dynamic vulcanization further decreased these values. For example, the melted areas of PA6 and TPE were 510 × 10−3 mm2 and 305 × 10−3 mm2, respectively, which reduced to 238 × 10−3 mm2 for TPV at 40 W laser power. FKM showed the lowest value (melted area of 180 × 10−3 mm2). In addition, the output quality of the cut surface was examined by measuring the root mean square (RMS) roughness of the cut edges and heat-affected zone (HAZ). The obtained results indicated that the dimension of the HAZ and RMS roughness largely decreased in TPE when compared with PA6. For example, the HAZ of PA6 was 700 μm, which decreased to 230 μm for TPE at 40 W laser power. On the other hand, HAZ was nonexistent for FKM. Infrared spectroscopic analysis showed that there was no structural change of TPE or pristine polymers after applying the low-power CO2 laser on the surface of materials. CO2 laser cutting will be a new technique in this industry, and this analysis will assist the manufacturing industry to choose a suitable laser system with exhaustive information of process parameters for cutting or machining of rubber, TPEs, and TPVs.


1989 ◽  
Vol 43 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Dane Bićanić ◽  
Siegfried Krüger ◽  
Paul Torfs ◽  
Bruno Bein ◽  
Frans Harren

An experimental setup for performance of reverse mirage spectroscopy at CO2 laser wavelengths on liquid samples having high values of absorption coefficients is described. One and the same liquid is used as both the absorbing and deflecting medium. The Rosencwaig-Gersho theory has been applied, and the choice of experimental conditions that would enable determination of absorption coefficient β from the magnitude of photothermal signals measured at two different probe beam distances (probing locations) is discussed. The usefulness of this technique (essentially not inhibited by the requirements imposed on the sample's thickness) is tested on methanol having absorption coefficients β close to 300 cm−1 in the wavelength region covered by CO2 laser emission.


Metals ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 456 ◽  
Author(s):  
Pasquale Russo Spena

Sign in / Sign up

Export Citation Format

Share Document