The effect of shielding gas on deep penetration high power fiber laser welding of thick plate steel for pipe line construction

2008 ◽  
Author(s):  
Mok-Young Lee
2013 ◽  
Vol 280 ◽  
pp. 868-875 ◽  
Author(s):  
M.J. Zhang ◽  
G.Y. Chen ◽  
Y. Zhou ◽  
S.C. Li ◽  
H. Deng

2011 ◽  
Vol 314-316 ◽  
pp. 941-944 ◽  
Author(s):  
Xiang Dong Gao ◽  
Qian Wen ◽  
Seiji Katayama

During deep penetration laser welding, a keyhole is formed in the molten pool due to the intense recoil pressure of evaporation. The formation of the keyhole leads to a deep penetration weld with a high aspect ratio and this is the most advantageous feature of welding by high-energy-density beams. The configuration and characteristics of a keyhole are related to the welding stability. In a fiber laser butt-joint welding of Type 304 austenitic stainless steel plate with a high power 10 kW continuous wave fiber laser, an infrared sensitive high-speed video camera was used to capture the dynamic images of the molten pools. The configurations of a keyhole were analyzed through image processing techniques such as median filtering, wiener filtering and gray level threshold segmentation to obtain the edge of a keyhole. The width and the area of a keyhole were defined as the keyhole characteristic parameters, and the deviation between the laser beam and weld center as a parameter reflecting the welding stability. By analyzing the change of the keyhole characteristic parameters during welding process, it was found that these parameters were related to the welding stability. Welding experimental results and analysis of the keyhole characteristic parameters confirmed that the welding stability could be monitored and distinguished by a keyhole configuration during high-power fiber laser welding.


2012 ◽  
Vol 201-202 ◽  
pp. 352-355
Author(s):  
Yong Hua Liu ◽  
Xiang Dong Gao

During deep penetration laser welding, a keyhole is formed in the molten pool. The characteristics of keyhole are related to the welding quality and stability. Analyzing the characteristic parameters of a keyhole during high power fiber laser welding is one of effective measures to control the welding quality and improve the welding stability. This paper studies a fiber laser butt-joint welding of Type 304 austenitic stainless steel plate with a high power 10 kW continuous wave fiber laser, and an infrared sensitive high-speed video camera was used to capture the dynamic images of the molten pools. A combination filtering system with a filter length of 960-990nm in front of the vision sensor was used to obtain the near infrared image and eliminate other light disturbances. The width, the area, the leftmost point, the rightmost point, the upmost point and the bottommost point of a keyhole were defined as the keyhole characteristic parameters. By using the image preprocessing method, such as median filtering, Wiener filtering, threshold segmentation and Canny edge detection methods, the characteristic parameters of a keyhole were obtained. By analyzing the change of the keyhole characteristic parameters during welding process, it was found that these parameters could reflect the quality and stability of laser welding effectively.


2012 ◽  
Vol 549 ◽  
pp. 1064-1068
Author(s):  
Jian Bin Liang ◽  
Xiang Dong Gao ◽  
De Yong You ◽  
Zhen Shi Li ◽  
Wei Ping Ruan

Laser welding includes the heat conduction welding and the deep penetration welding. Deep penetration welding can not only penetrate the material completely, but also can vaporize the material. An important phenomenon during deep penetration welding is that molten pool in the weldment will appear a keyhole. The formation of the keyhole leads to a deep penetration weld with a high aspect ratio and this is the most advantageous feature of welding by high-energy-density beams. Small focus wandering off weld seam may result in lack of penetration or unacceptable welds, and largely reduce heating efficiency. In a fiber laser butt-joint welding of Type 304 austenitic stainless steel plate with a high power 6kW continuous wave fiber laser, an infrared sensitive high-speed video camera was used to capture the dynamic images of the molten pools. The configurations of molten pools were analyzed through image processing techniques such as median filtering, partial Otsu threshold segmentation and Canny edge to obtain the edge of keyholes and molten pools. The circular degree and the area of keyholes and the width and average gray of molten pools were defined as characteristic parameters to reflect the seam offset between the laser beam and the weld center. By analyzing the change of characteristic parameters during welding process, it was found that these parameters were related to the seam offset. Welding experimental results and analysis of characteristic parameters confirmed that the seam offset could be monitored and distinguished by molten pools configuration during high-power fiber laser welding.


2020 ◽  
Vol 47 (11) ◽  
pp. 1102005
Author(s):  
赵乐 Zhao Le ◽  
曹政 Cao Zheng ◽  
邹江林 Zou Jinglin ◽  
韩雪 Han Xue ◽  
肖荣诗 Xiao Rongshi

Metals ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 449 ◽  
Author(s):  
Shichun Li ◽  
Wei Xu ◽  
Fei Su ◽  
Hui Deng ◽  
Zhaohui Deng

2008 ◽  
Author(s):  
Naoyuki Matsumoto ◽  
Yousuke Kawahito ◽  
Masami Mizutani ◽  
Seiji Katayama

2017 ◽  
Vol 54 (1) ◽  
pp. 011404
Author(s):  
樊 宇 Fan Yu ◽  
李沛智 Li Peizhi ◽  
柳岸敏 Liu Anmin ◽  
陈 正 Chen Zheng ◽  
郭 跃 Guo Yue

Author(s):  
Xudong Zhang ◽  
Eiji Ashida ◽  
Seiji Katayama ◽  
Masami Mizutani ◽  
Yusuke Anma ◽  
...  

2019 ◽  
Vol 114 ◽  
pp. 1-9 ◽  
Author(s):  
Dabin Zhang ◽  
Meng Wang ◽  
Chengsong Shu ◽  
Yunfei Zhang ◽  
Dongsheng Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document