scholarly journals Morphological Classification of Inclusions in Steel by Image Processing of Micrograph.

1996 ◽  
Vol 36 (Suppl) ◽  
pp. S113-S116 ◽  
Author(s):  
Masahiro Kawakami ◽  
Eiji Nakamura ◽  
Shuzou Matsumoto ◽  
Seiji Yokoyama
2016 ◽  
Vol 136 (8) ◽  
pp. 1120-1127 ◽  
Author(s):  
Naoya Ikemoto ◽  
Kenji Terada ◽  
Yuta Takashina ◽  
Akio Nakano

Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


2013 ◽  
Vol 38 (2) ◽  
pp. 374-379 ◽  
Author(s):  
Zhi-Li PAN ◽  
Meng QI ◽  
Chun-Yang WEI ◽  
Feng LI ◽  
Shi-Xiang ZHANG ◽  
...  

Author(s):  
S. N. Bogdanov ◽  
◽  
S. Ju. Babaev ◽  
A. V. Strazhnov ◽  
A. B. Stroganov ◽  
...  

2021 ◽  
Vol 503 (2) ◽  
pp. 1828-1846
Author(s):  
Burger Becker ◽  
Mattia Vaccari ◽  
Matthew Prescott ◽  
Trienko Grobler

ABSTRACT The morphological classification of radio sources is important to gain a full understanding of galaxy evolution processes and their relation with local environmental properties. Furthermore, the complex nature of the problem, its appeal for citizen scientists, and the large data rates generated by existing and upcoming radio telescopes combine to make the morphological classification of radio sources an ideal test case for the application of machine learning techniques. One approach that has shown great promise recently is convolutional neural networks (CNNs). Literature, however, lacks two major things when it comes to CNNs and radio galaxy morphological classification. First, a proper analysis of whether overfitting occurs when training CNNs to perform radio galaxy morphological classification using a small curated training set is needed. Secondly, a good comparative study regarding the practical applicability of the CNN architectures in literature is required. Both of these shortcomings are addressed in this paper. Multiple performance metrics are used for the latter comparative study, such as inference time, model complexity, computational complexity, and mean per class accuracy. As part of this study, we also investigate the effect that receptive field, stride length, and coverage have on recognition performance. For the sake of completeness, we also investigate the recognition performance gains that we can obtain by employing classification ensembles. A ranking system based upon recognition and computational performance is proposed. MCRGNet, Radio Galaxy Zoo, and ConvXpress (novel classifier) are the architectures that best balance computational requirements with recognition performance.


Sign in / Sign up

Export Citation Format

Share Document