scholarly journals Effects of Tempering Temperature on Wear Resistance and Surface Roughness of a High Speed Steel Roll.

2001 ◽  
Vol 41 (8) ◽  
pp. 859-865 ◽  
Author(s):  
Jung Ho Lee ◽  
Jun Cheol Oh ◽  
Joon Wook Park ◽  
Hui Choon Lee ◽  
Sunghak Lee
2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


2009 ◽  
Vol 416 ◽  
pp. 443-448 ◽  
Author(s):  
Hui Min Chen ◽  
Liu Jie Xu ◽  
Shi Zhong Wei

The expansion curves during the procedure of continuous cooling which high vanadium high speed steel (HSS) was tempered with 250°C, 550°C and 600°C after 1050°C quenching were determined by the Gleeble-1500D thermal simulation test device, and the curves were analyzed subsequently. The hardness and microstructure of high vanadium HSS under different tempering temperatures were analyzed by means of SEM, TEM and X-ray diffraction, and the influence of tempering temperature on the hardness and retained austenite were discussed. At the same time, the wear resistance of the material at different tempering temperatures was studied by the HST-100 friction wear testing machine, and the influence of microstructure on wear resistance was analyzed further. The studies show that the structures are not transformed at 250°C tempering with cooling rate of 0.5°C/s; The retained austenite transformed to martensite at about 390°C when 550°C and 600°C tempering. Wear test shows that the abrasive wear performance is excellent with 550°C tempering after 1050°C quenching because of the decrease of the amount of retained austenite, therefore the heat treatment of 550°C tempering after quenching of high vanadium HSS is optimal.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Alloy Digest ◽  
1953 ◽  
Vol 2 (9) ◽  

Abstract CIRCLE M is a molybdenum-tungsten high-speed steel containing 9.0% cobalt. It is adapted to high production applications where increased speeds and heavy cuts necessitate unusual red-hardness and wear resistance. This datasheet provides information on composition, physical properties, elasticity, and compressive strength. It also includes information on forming, heat treating, and machining. Filing Code: TS-10. Producer or source: Firth Sterling Corporation.


Alloy Digest ◽  
1972 ◽  
Vol 21 (2) ◽  

Abstract AISI TYPE M2 is a molybdenum-tungsten high-speed steel with a balanced analysis which produces properties applicable to all general-purpose high-speed uses. It has an excellent balance between toughness and wear resistance. This datasheet provides information on composition, physical properties, hardness, and compressive strength as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-240. Producer or source: Tool steel mills.


Alloy Digest ◽  
1977 ◽  
Vol 26 (4) ◽  

Abstract FAGERSTA WKE-45 is a tungsten-molybdenum high-speed steel containing 11% cobalt. It has greater red hardness and more wear resistance than almost any other high-speed steel and has adequate (medium) toughness. It is used mainly for lathe tools (for example, tool bits) where maximum wear resistance and red hardness are required. It is particularly suitable for working very hard and wear-inducing materials, including stainless steels. This datasheet provides information on composition and hardness. It also includes information on forming, heat treating, and machining. Filing Code: TS-317. Producer or source: Fagersta Steels Inc..


Sign in / Sign up

Export Citation Format

Share Document