Structural Transformation of High Vanadium High Speed Steel during Tempering and its Influence on Abrasive Wear Performance of the Material

2009 ◽  
Vol 416 ◽  
pp. 443-448 ◽  
Author(s):  
Hui Min Chen ◽  
Liu Jie Xu ◽  
Shi Zhong Wei

The expansion curves during the procedure of continuous cooling which high vanadium high speed steel (HSS) was tempered with 250°C, 550°C and 600°C after 1050°C quenching were determined by the Gleeble-1500D thermal simulation test device, and the curves were analyzed subsequently. The hardness and microstructure of high vanadium HSS under different tempering temperatures were analyzed by means of SEM, TEM and X-ray diffraction, and the influence of tempering temperature on the hardness and retained austenite were discussed. At the same time, the wear resistance of the material at different tempering temperatures was studied by the HST-100 friction wear testing machine, and the influence of microstructure on wear resistance was analyzed further. The studies show that the structures are not transformed at 250°C tempering with cooling rate of 0.5°C/s; The retained austenite transformed to martensite at about 390°C when 550°C and 600°C tempering. Wear test shows that the abrasive wear performance is excellent with 550°C tempering after 1050°C quenching because of the decrease of the amount of retained austenite, therefore the heat treatment of 550°C tempering after quenching of high vanadium HSS is optimal.

Author(s):  
Shizhong Wei ◽  
Jinhua Zhu ◽  
Liujie Xu ◽  
Rui Long

It is studied the carbons abrasive wear property of high vanadium high speed steel compared with that of general high chromium cast iron (Cr20) in this paper. The vanadium content is 10% in the high vanadium high speed steel, and it is a kind of new wear material that has been studied in the past ten years. In the experiment the three materials were used to resist the abrasive wear of Al2O3, the wear test was conducted on a ML-10 abrasive wear-testing machine. The abrasive surfaces, cross-section and sloping -section surfaces were scanned by means of a SEM (JSM-5160LV) device. The typical morphology photos of VC and Cr7C3 were taken in course of abrasive wear, which not only describe the different abrasive wear property of the carbons in the two materials, but also make the cause of the excellent wear property of this HSS clear. The research results have showed that the service lives (V10) are three times longer than that of high chromium cast iron (Cr20). The excellent wear resistance of high vanadium high-speed steel depends on the characters of high hardness, lumpy morphology of VC which are scattered in hard matrix of HSS.


2010 ◽  
Vol 455 ◽  
pp. 431-434
Author(s):  
Hui Min Chen ◽  
L.J. Xu ◽  
H.G. Wang

The frictional resistance and abrasion mechanism of high vanadium high speed steel were studied by the self-made friction wear testing machine under the conditions of 0.5% slip-roll ratio. Results show that the frictional resistance increases with the increase of carbon content. The retained austenite and the shapes of carbides will change when the carbon content alters, which make the frictional resistance of the material change, and the proper quantities of retained austenite makes the impact toughness the matrix better; The spherical VC can prevent the initiation and expansion of cracks forming and make the frictional resistance increase. The abrasion mechanism is fatigue flake under the condition of rolling and sliding.


2010 ◽  
Vol 458 ◽  
pp. 252-257 ◽  
Author(s):  
Hui Min Chen ◽  
Liu Jie Xu

The frictional resistance and abrasion mechanism of high vanadium high speed steel were studied by the self-made friction wear testing machine under the conditions of 10% slip-roll ratio. Results show that the frictional resistance increases with the increase of carbon content and is optimal when the carbon content is 2.92%. The carbon content affect the wear resistance by changing the amount of the retained austenite and the shapes of carbides, the moderate quantities of retained austenite makes the matrix have better impact toughness and hardness; The spherical VC can prevent the initiation and expansion of cracks forming and make the frictional resistance increase. The abrasion mechanism is fatigue flake under the condition of rolling and sliding.


2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


2001 ◽  
Vol 41 (8) ◽  
pp. 859-865 ◽  
Author(s):  
Jung Ho Lee ◽  
Jun Cheol Oh ◽  
Joon Wook Park ◽  
Hui Choon Lee ◽  
Sunghak Lee

2013 ◽  
Vol 594-595 ◽  
pp. 1117-1121
Author(s):  
Мazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Merey Rakhadilov

In this work the influence of electrolytic-plasma nitriding on the abrasive wear-resistance of R6M5 high-speed steel were under research. We registered that after electrolytic-plasma nitriding on R6M5 steel surface modified layer is formed with 20-40 μm thickness and with increased microhardness of 9000-12200 MPa. Testing mode for the nitrided samples high-speed steel on abrasive wear developed. It is established, that electrolyte-plasma nitriding allows to increase wear-resistance of R6M5 steel surface layer comparing to original. It was determined that abrasive wear-resistance of R6M5 steel surface layer is increased to 25% as a result of electrolytic plasma nitriding. Thus, studies have demonstrated the feasibility and applicability of electrolytic-plasma nitriding in order to improve cutting tools work resource, working under friction and wear conditions.


2020 ◽  
Vol 10 (7) ◽  
pp. 1079-1090 ◽  
Author(s):  
Gulam Mohammed Sayeed Ahmed ◽  
Irfan Anjum Badruddin ◽  
Vineet Tirth ◽  
Ali Algahtani ◽  
Mohammed Azam Ali

This work presents wear study on maraging steel developed by additive manufacturing using Direct Metal Laser Sintering, utilizing a laser beam of high-power density for melting and fusing the metallic powders. Short aging treatment was given to the specimen prior to the wear tests. The density and the hardness of the 3D printed maraging steel were found to be better than the homogenized-aged 18Ni1900 maraging steel. The wear resistance is an important aspect that influences the functionality of the components. The wear tests in dry condition were performed on maraging steel on pin/disc standard wear testing machine. The design of experiments was planned and executed based on response surface methodology. This technique is employed to investigate three influencing and controlling constraints namely speed, load, and distance of sliding. It has been observed that sliding speed and normal load significantly affects the wear of the specimen. The statistical optimization confirms that the normal load, sliding distance, and speed are significant for reducing the wear rate. The confirmation test was conducted with a 95% confidence interval using optimal parameters for validation of wear test results. A mathematical model was developed to estimate the wear rate. The experimental results were matched with the projected values. The wear test parameters for minimum and maximum wear rate have been determined.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 660
Author(s):  
Qun Wang ◽  
Yingpeng Zhang ◽  
Xiang Ding ◽  
Shaoyi Wang ◽  
Chidambaram Seshadri Ramachandran

In order to investigate the effect of WC grain size on coatings’ properties and abrasive wear performance, a few WC-20Cr3C2-7Ni coatings with three different WC grain sizes were deposited by the high-velocity oxy-fuel (HVOF) thermal spray process. The phase compositions, microstructures, and mechanical properties of the coatings were investigated. Furthermore, the two- and three-body abrasive wear performances of the three coatings were tested by using SiC and SiO2 abrasives, respectively. The results show that all the three coatings were composed of WC, Cr3C2, and the Ni binder as well as the (W,Cr)2C phase. The abrasive wear resistance of the WC-20Cr3C2-7Ni coating monotonously increased with increasing WC grain size when the SiC abrasive was used in the two- and three-body abrasive wear tests. However, the wear resistance trend was reversed when the SiO2 abrasive was used in the three-body abrasive wear test. The specific wear rate of the WC-20Cr3C2-7Ni coating exposed to the SiC abrasive under the two-body abrasive wear test was the largest. The wear resistance of the coatings was more significantly affected by the hardness of the abrasive particles than the size of carbides present within the coating. The high hardness of SiC can cut both the carbide and the binder phase of the WC-based cermet coatings, resulting in a high wear rate, whereas the low hardness of SiO2 cuts and/or scratches the binder initially, and then it dislodges the carbides from the matrix. The dislodged carbides which were subsequently pulled out from the matrix by the repeated impact of the SiO2 abrasives result in a milder wear rate.


Author(s):  
Zhongqi Sheng ◽  
Jing Zhou ◽  
Jiayao Xuan ◽  
Shicheng Wei ◽  
Yujiang Wang ◽  
...  

To improve the microstructure density of high-velocity arc spraying coating and enhance its adhesive strength and wear resistance, a plasma remelting investigation of the FeNiCrAl sprayed coating was carried out in this study. The microstructure and phase composition of the sprayed coating and the remelted coating were compared by using metalloscope, scanning electron microscope and X-ray diffractometer. The microhardness distribution and friction wear characteristics of the plasma remelted FeNiCrAl sprayed coating were investigated by microhardness tester and CETR sliding friction wear testing machine. The results showed that the remelted coating has more compact microstructure and presents metallurgical bonding with the substrate. The generation of hard phases such as (Fe,Cr)7C3 and Cr23C6 as well as solid solution (Fe,Cr) increases the microhardness of the remelted coating significantly, about 1.4 times higher than that of the sprayed coating. According to sliding friction wear test, the abrasion losses of the sprayed coating under 10 N and 20 N loads are 4.6 and 10.5 times higher than those of the remelted coating, indicating the better wear resistance of the remelted coating.


Sign in / Sign up

Export Citation Format

Share Document