Control of Boundary Structure and Grain Growth for Microstructural Design

2005 ◽  
Vol 475-479 ◽  
pp. 3891-3896 ◽  
Author(s):  
Si Young Choi ◽  
Suk Joong L. Kang

The design of microstructure in materials, ranging from ultrafine, moderately sized, duplex to single crystalline, has long been a challenging subject to material scientists. A basic means to achieve this goal is related to the control of grain growth. Taking BaTiO3 as a model system, this investigation shows that control of grain boundary structure between rough and faceted and control of initial grain size can allow us to achieve the goal. When the grain boundary is rough, normal grain growth occurs with a moderate rate. On the other hand, for faceted boundaries, either abnormal grain growth or grain growth inhibition occurs resulting in a duplex grain structure or fine-grained structure, respectively. Growth of single crystals is also possible when the boundary is faceted. During crystal growth amorphous films can form and thicken at dry grain boundaries above the eutectic temperature. As the film thickness increases, the growth rate of the crystals is reduced. This observed growth behavior of grains with boundary structure is explained in terms of the difference in mobility between the two types of boundaries. The results demonstrate the basic principles of obtaining various microstructures from the same material.

Author(s):  
Brian Ralph ◽  
Barlow Claire ◽  
Nicola Ecob

This brief review seeks to summarize some of the main property changes which may be induced by altering the grain structure of materials. Where appropriate an interpretation is given of these changes in terms of current theories of grain boundary structure, and some examples from current studies are presented at the end of this paper.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 187-195 ◽  
Author(s):  
V. Sursaeva ◽  
U. Czubayko ◽  
A. Touflin

Changes of the grain boundary character distribution and texture during normal grain growth have been investigated using the SAC-SEM based method and a 4 circle X-ray texture goniometer on A1 strips with columnar structure. The microstructure of the strips consists of regions with oriented (clusters) and randomly oriented grains. All changes of microstructure are outside the clusters during normal grain growth and consequently no texture change was observed.


2005 ◽  
Vol 475-479 ◽  
pp. 1673-1676 ◽  
Author(s):  
Isamu Kuchiwaki ◽  
Takahiro Hirabayashi ◽  
Hiroshi Fukushima

Cast polycrystalline silicon for solar cell contains mostly straight twin boundaries which are thought to have little effect on the electrical activity. There are, however, some complicated grain boundaries in it. One of these boundaries consists of slightly curved and straight parts. The structure of this boundary was analyzed to investigate the difference of these two types of boundaries. The conventional transmission electron microscopy (TEM) found that this slightly curved boundary was the zigzag shaped boundary made by (11 _ ,2) and ( _ ,211) planes. High resolution electron microscopy (HREM) confirmed that (11 _ ,2) plane was the boundary of {112} Σ3 twin boundary which formed a straight grain boundary at the other end of the analyzed grain boundary, and also confirmed that ( _ ,2 11) plane was also the boundary of {112} Σ3 twin boundary which intersected with the former twin boundary at an angle of 120 [deg].


2004 ◽  
Vol 449-452 ◽  
pp. 265-268 ◽  
Author(s):  
Tetsuhiko Onda ◽  
H. Yamauchi ◽  
Motozo Hayakawa

The effect of CoO addition into Y-TZP (Yttria doped Tetragonal Zirconia Polycrystals) was studied on the evolution of its sintering ability, grain size, grain boundary structure and mechanical properties. The doping of a small amount of CoO effectively reduced the sintering temperature. A small amount of CoO up to ~ 0.3 mol% was effective for the suppression of grain growth, but the addition of 1.0 mole % resulted in an enhanced grain growth. The hardness and toughness of the CoO doped TZP were about the same as those of undoped TZP. Furthermore, despite the grain refinement, CoO doped TZP did not exhibit improved mechanical properties. This may be suggesting that CoO dopant had weakened the grain boundary strength.


2013 ◽  
Vol 785-786 ◽  
pp. 512-516
Author(s):  
Ying Jun Gao ◽  
Wen Quan Zhou ◽  
Yao Liu ◽  
Chuang Gao Huang ◽  
Qiang Hua Lu

The two-mode phase field-crystal (PFC) method is used to simulate the nanograin growth, including the grain growth in different sets of crystal planes, the grain boundary structure with mismatch, the grain orientation and also the incoherent grain boundary in two dimensional plane. It is obviously observed that there are dislocation structures in nanograin boundary due to mismatch and misorientation of grains. These simulation results can not only be used in artificial controlling the grain boundary of nanograin, but also is of significant for designing new nanograin with a good grain boundary for structure materials.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Michael Mertens ◽  
Markus Mohr ◽  
Neda Wiora ◽  
Kai Brühne ◽  
Hans-Jörg Fecht

We present the synthesis of ultrananocrystalline diamond (UNCD) films by application of hot filament chemical vapor deposition (HFCVD). We furthermore studied the different morphological, structural, and electrical properties. The grown films are fine grained with grain sizes between 4 and 7 nm. The UNCD films exhibit different electrical conductivities, dependent on grain boundary structure. We present different contact metallizations exhibiting ohmic contact behavior and good adhesion to the UNCD surface. The temperature dependence of the electrical conductivity is presented between −200 and 900°C. We furthermore present spectroscopic investigations of the films, supporting that the origin of the conductivity is the structure and volume of the grain boundary.


Sign in / Sign up

Export Citation Format

Share Document