scholarly journals Slow Strain Rate Tensile Test Properties of Iron-Based Superalloy SUH660 in Hydrogen Gas

2018 ◽  
Vol 104 (6) ◽  
pp. 338-345
Author(s):  
Akihiko Fukunaga
2017 ◽  
Vol 58 (6) ◽  
pp. 886-891 ◽  
Author(s):  
Kenichi Koide ◽  
Toshirou Anraku ◽  
Akihiro Iwase ◽  
Hiroyuki Inoue

2021 ◽  
Vol 1016 ◽  
pp. 568-573
Author(s):  
Keitaro Horikawa ◽  
Michiko Arayama ◽  
Hidetoshi Kobayashi

We have developed a new testing device which is capable of detecting hydrogen gas release during slow strain rate tensile testing (SSRT) under ordinary pressure. The device is composed of an SSRT machine equipped with a closed chamber with an inspection window that is connected to gas chromatography with a semiconductor hydrogen sensor. Local strain distribution in the specimen during the SSRT is monitored dynamically with a digital image correlation (DIC) method. Hydrogen was pre-charged to aluminum alloys by means of friction in water process. Using the device, it was shown that hydrogen was released particularly in the stage of plastic deformation and fracture. In addition, the hydrogen gas release at the moment of fracture was clearly increased when the alloys were hydrogen-charged and tested at a slow strain rate. When we calculated hydrogen gas release from the fracture surface in Al-Zn-Mg base alloys tested at 3.3×10-6 s-1, the hydrogen amount was estimated to be 6.24×10-10 mol /mm2 in a hydrogen-uncharged alloy, and 1.30×10-9 mol / mm2 in a hydrogen-charged alloy.


2016 ◽  
Vol 258 ◽  
pp. 259-264
Author(s):  
Saburo Matsuoka ◽  
Junichiro Yamabe ◽  
Hisao Matsunaga

For slow strain rate tensile (SSRT) test in hydrogen gas, the degradation in relative reduction in area (RRA) of 300-series austenitic stainless steels is mainly attributed to hydrogen-assisted surface crack growth (HASCG) accompanied by quasi-cleavages. To establish novel criteria for authorizing various austenitic stainless steels for use in high-pressure gaseous hydrogen, a mechanism of the HASCG should be elucidated. At first, this study performed SSRT tests on six types of austenitic stainless steels, Types 304, 316, 316L, 306(hi-Ni), 304N2 and 304(N), in high-pressure hydrogen gas and showed that the RRAs were successfully quantified in terms of a newly-proposed nickel-equivalent equation. Then, to elucidate the microscopic mechanism of the HASCG, elasto-plastic fracture toughness (JIC), fatigue crack growth (FCG) and fatigue life tests on Types 304, 316 and 316L were carried out in high-pressure hydrogen gas. The results demonstrated that the SSRT surface crack grew via the same mechanism as for the JIC and fatigue cracks, i.e., these cracks successively grow with a sharp shape under the loading process, due to local slip deformations near the crack tip by hydrogen. Detailed observations of SSRT surface cracks on Types 304 and 316L were also performed, exhibiting that the onset of the HASCG occurred at the true strain of 0.1 or larger in high-pressure hydrogen gas.


Sign in / Sign up

Export Citation Format

Share Document