Machines and free weight exercises: a systematic review and meta-analysis comparing changes in muscle size, strength, and power

Author(s):  
Kyle A. HEIDEL ◽  
Zachary J. NOVAK ◽  
Scott J. DANKEL
Author(s):  
Pedro J. Benito ◽  
Rocío Cupeiro ◽  
Domingo J. Ramos-Campo ◽  
Pedro E. Alcaraz ◽  
Jacobo Á. Rubio-Arias

We performed a systematic review and meta-analysis to study all published clinical trial interventions, determined the magnitude of whole-body hypertrophy in humans (healthy males) and observed the individual responsibility of each variable in muscle growth after resistance training (RT). Searches were conducted in PubMed, Web of Science and the Cochrane Library from database inception until 10 May 2018 for original articles assessing the effects of RT on muscle size after interventions of more than 2 weeks of duration. Specifically, we obtain the variables fat-free mass (FMM), lean muscle mass (LMM) and skeletal muscle mass (SMM). The effects on outcomes were expressed as mean differences (MD) and a random-effects meta-analysis and meta-regressions determined covariates (age, weight, height, durations in weeks…) to explore the moderate effect related to the participants and characteristics of training. One hundred and eleven studies (158 groups, 1927 participants) reported on the effects of RT for muscle mass. RT significantly increased muscle mass (FFM+LMM+SMM; Δ1.53 kg; 95% CI [1.30, 1.76], p < 0.001; I2 = 0%, p = 1.00). Considering the overall effects of the meta-regression, and taking into account the participants’ characteristics, none of the studied covariates explained any effect on changes in muscle mass. Regarding the training characteristics, the only significant variable that explained the variance of the hypertrophy was the sets per workout, showing a significant negative interaction (MD; estimate: 1.85, 95% CI [1.45, 2.25], p < 0.001; moderator: -0.03 95% CI [−0.05, −0.001] p = 0.04). In conclusion, RT has a significant effect on the improvement of hypertrophy (~1.5 kg). The excessive sets per workout affects negatively the muscle mass gain.


2019 ◽  
Vol 27 (2) ◽  
pp. 181-195 ◽  
Author(s):  
P.R. Lawrenson ◽  
K.M. Crossley ◽  
B.T. Vicenzino ◽  
P.W. Hodges ◽  
G. James ◽  
...  

2021 ◽  
Author(s):  
Moritz Schumann ◽  
Joshua F Feuerbacher ◽  
Marvin Sünkeler ◽  
Nils Freitag ◽  
Bent Rønnestad ◽  
...  

ObjectiveThis systematic review assessed the compatibility of concurrent aerobic and strength training compared to sole strength training regarding adaptations in muscle function (maximal and explosive strength) and muscle mass. Subgroup analyses were conducted to examine the impact of training modality, exercise type, exercise order, training frequency, age, and training status.DesignA systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). PROSPERO: CRD42020203777Data sourcesPubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus and Scopus were systematically searched (12th of August 2020, updated on the 15th of March 2021).Eligibility criteriaPopulation: Healthy adults of any sex and age; Intervention: Supervised, concurrent aerobic and strength training of at least 4 weeks; Comparison: Sole strength training with matched strength training volume; Outcome: maximal strength, explosive strength and muscle hypertrophy. ResultsA total of 43 studies were included. The estimated average standardised mean differences (SMD) based on the random-effects model were -0.06 (95% CI: -0.20, 0.09, p=0.446), -0.28 (95% CI: -0.48, - 0.08, p=0.007) and -0.01 (95% CI: -0.16, 0.18, p=0.919) for maximal strength, explosive strength and muscle hypertrophy, respectively. The attenuation in explosive strength was more pronounced when concurrent training was performed within the same session (p=0.043) compared with separating the sessions by at least 3 h (p&gt;0.05). Summary/ConclusionConcurrent aerobic and strength training does not compromise muscle hypertrophy and maximal strength development. However, explosive strength gains may be attenuated, especially when aerobic and strength training are performed within the same session.


2021 ◽  
Author(s):  
Yali Wei ◽  
Yan Meng ◽  
Na Li ◽  
Qian Wang ◽  
Liyong Chen

The purpose of the systematic review and meta-analysis was to determine if low-ratio n-6/n-3 long-chain polyunsaturated fatty acid (PUFA) supplementation affects serum inflammation markers based on current studies.


Sign in / Sign up

Export Citation Format

Share Document