scholarly journals Existence and Stability of Solutions for Bilinear Control System with Rieman-Leovel Initial Condition

2017 ◽  
Vol 28 (1) ◽  
pp. 118
Author(s):  
Sameer Q. Hasan ◽  
Fatima S. Hussein

In this paper, we shall study the existence of a new class called fractional Caputo type of order sobolev type fractional order differential Equations motion in separable Banach spaces. The class of impulsive nonlinear fractional order bilinear control differential Equations with Riemann Leovel differential initial value studied and discussed also given the important results for the almost periodic mild solution to be sTable by using Menards function and granwal fractional inequality.

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 454 ◽  
Author(s):  
Ali Yousef ◽  
Fatma Bozkurt Yousef

This article concerns establishing a system of fractional-order differential equations (FDEs) to model a plant–herbivore interaction. Firstly, we show that the model has non-negative solutions, and then we study the existence and stability analysis of the constructed model. To investigate the case according to a low population density of the plant population, we incorporate the Allee function into the model. Considering the center manifold theorem and bifurcation theory, we show that the model shows flip bifurcation. Finally, the simulation results agree with the theoretical studies.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zoltan Satmari

<p style='text-indent:20px;'>In this work we will discuss about an approximation method for initial value problems associated to fractional order differential equations. For this method we will use Bernstein spline approximation in combination with the Banach's Fixed Point Theorem. In order to illustrate our results, some numerical examples will be presented at the end of this article.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Haidong Qu ◽  
Xiaopeng Yang ◽  
Zihang She

Two new orthogonal functions named the left- and the right-shifted fractional-order Legendre polynomials (SFLPs) are proposed. Several useful formulas for the SFLPs are directly generalized from the classic Legendre polynomials. The left and right fractional differential expressions in Caputo sense of the SFLPs are derived. As an application, it is effective for solving the fractional-order differential equations with the initial value problem by using the SFLP tau method.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zahra Eidinejad ◽  
Reza Saadati ◽  
Manuel De La Sen

In this paper, we consider a class of fractional-order differential equations and investigate two aspects of these equations. First, we consider the existence of a unique solution, and then, using a new class of control functions, we investigate the Gauss hypergeometric stability. We use Chebyshev and Bielecki norms in order to prove these aspects by the Picard method. Finally, we give some examples to illustrate our results.


2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Hari Mohan Srivastava ◽  
Daba Meshesha Gusu ◽  
Pshtiwan Othman Mohammed ◽  
Gidisa Wedajo ◽  
Kamsing Nonlaopon ◽  
...  

Here, in this article, we investigate the solution of a general family of fractional-order differential equations by using the spectral Tau method in the sense of Liouville–Caputo type fractional derivatives with a linear functional argument. We use the Chebyshev polynomials of the second kind to develop a recurrence relation subjected to a certain initial condition. The behavior of the approximate series solutions are tabulated and plotted at different values of the fractional orders ν and α. The method provides an efficient convergent series solution form with easily computable coefficients. The obtained results show that the method is remarkably effective and convenient in finding solutions of fractional-order differential equations.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.


2021 ◽  
Vol 60 (3) ◽  
pp. 3205-3217
Author(s):  
Rashid Nawaz ◽  
Nasir Ali ◽  
Laiq Zada ◽  
Kottakkkaran Sooppy Nisar ◽  
M.R. Alharthi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document