scholarly journals Comparative Evaluation of Translation Memory (TM) and Machine Translation (MT) Systems in Translation between Arabic and English

2021 ◽  
Author(s):  
◽  
Khaled Mamer Ben Milad ◽  

In general, advances in translation technology tools have enhanced translation quality significantly. Unfortunately, however, it seems that this is not the case for all language pairs. A concern arises when the users of translation tools want to work between different language families such as Arabic and English. The main problems facing Arabic<>English translation tools lie in Arabic’s characteristic free word order, richness of word inflection – including orthographic ambiguity – and optionality of diacritics, in addition to a lack of data resources. The aim of this study is to compare the performance of translation memory (TM) and machine translation (MT) systems in translating between Arabic and English.The research evaluates the two systems based on specific criteria relating to needs and expected results. The first part of the thesis evaluates the performance of a set of well-known TM systems when retrieving a segment of text that includes an Arabic linguistic feature. As it is widely known that TM matching metrics are based solely on the use of edit distance string measurements, it was expected that the aforementioned issues would lead to a low match percentage. The second part of the thesis evaluates multiple MT systems that use the mainstream neural machine translation (NMT) approach to translation quality. Due to a lack of training data resources and its rich morphology, it was anticipated that Arabic features would reduce the translation quality of this corpus-based approach. The systems’ output was evaluated using both automatic evaluation metrics including BLEU and hLEPOR, and TAUS human quality ranking criteria for adequacy and fluency.The study employed a black-box testing methodology to experimentally examine the TM systems through a test suite instrument and also to translate Arabic English sentences to collect the MT systems’ output. A translation threshold was used to evaluate the fuzzy matches of TM systems, while an online survey was used to collect participants’ responses to the quality of MT system’s output. The experiments’ input of both systems was extracted from Arabic<>English corpora, which was examined by means of quantitative data analysis. The results show that, when retrieving translations, the current TM matching metrics are unable to recognise Arabic features and score them appropriately. In terms of automatic translation, MT produced good results for adequacy, especially when translating from Arabic to English, but the systems’ output appeared to need post-editing for fluency. Moreover, when retrievingfrom Arabic, it was found that short sentences were handled much better by MT than by TM. The findings may be given as recommendations to software developers.

Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


2019 ◽  
Vol 252 ◽  
pp. 03006
Author(s):  
Ualsher Tukeyev ◽  
Aidana Karibayeva ◽  
Balzhan Abduali

The lack of big parallel data is present for the Kazakh language. This problem seriously impairs the quality of machine translation from and into Kazakh. This article considers the neural machine translation of the Kazakh language on the basis of synthetic corpora. The Kazakh language belongs to the Turkic languages, which are characterised by rich morphology. Neural machine translation of natural languages requires large training data. The article will show the model for the creation of synthetic corpora, namely the generation of sentences based on complete suffixes for the Kazakh language. The novelty of this approach of the synthetic corpora generation for the Kazakh language is the generation of sentences on the basis of the complete system of suffixes of the Kazakh language. By using generated synthetic corpora we are improving the translation quality in neural machine translation of Kazakh-English and Kazakh-Russian pairs.


2020 ◽  
Vol 10 (4) ◽  
pp. 43
Author(s):  
Linda Alkhawaja ◽  
Hanan Ibrahim ◽  
Fida’ Ghnaim ◽  
Sirine Awwad

The neural machine translation (NMT) revolution is upon us. Since 2016, an increasing number of scientific publications have examined the improvements in the quality of machine translation (MT) systems. However, much remains to be done for specific language pairs, such as Arabic and English. This raises the question whether NMT is a useful tool for translating text from English to Arabic. For this purpose, 100 English passages were obtained from different broadcasting websites and translated using NMT in Google Translate. The NMT outputs were reviewed by three professional bilingual evaluators specializing in linguistics and translation, who scored the translations based on the translation quality assessment (QA) model. First, the evaluators identified the most common errors that appeared in the translated text. Next, they evaluated adequacy and fluency of MT using a 5-point scale. Our results indicate that mistranslation is the most common type of error, followed by corruption of the overall meaning of the sentence and orthographic errors. Nevertheless, adequacy and fluency of the translated text are of acceptable quality. The results of our research can be used to improve the quality of Google NMT output.


2018 ◽  
Vol 8 (6) ◽  
pp. 3512-3514
Author(s):  
D. Chopra ◽  
N. Joshi ◽  
I. Mathur

Machine translation (MT) has been a topic of great research during the last sixty years, but, improving its quality is still considered an open problem. In the current paper, we will discuss improvements in MT quality by the use of the ensemble approach. We performed MT from English to Hindi using 6 MT different engines described in this paper. We found that the quality of MT is improved by using a combination of various approaches as compared to the simple baseline approach for performing MT from source to target text.


Author(s):  
Yang Zhao ◽  
Jiajun Zhang ◽  
Yu Zhou ◽  
Chengqing Zong

Knowledge graphs (KGs) store much structured information on various entities, many of which are not covered by the parallel sentence pairs of neural machine translation (NMT). To improve the translation quality of these entities, in this paper we propose a novel KGs enhanced NMT method. Specifically, we first induce the new translation results of these entities by transforming the source and target KGs into a unified semantic space. We then generate adequate pseudo parallel sentence pairs that contain these induced entity pairs. Finally, NMT model is jointly trained by the original and pseudo sentence pairs. The extensive experiments on Chinese-to-English and Englishto-Japanese translation tasks demonstrate that our method significantly outperforms the strong baseline models in translation quality, especially in handling the induced entities.


Author(s):  
A.V. Kozina ◽  
Yu.S. Belov

Automatically assessing the quality of machine translation is an important yet challenging task for machine translation research. Translation quality assessment is understood as predicting translation quality without reference to the source text. Translation quality depends on the specific machine translation system and often requires post-editing. Manual editing is a long and expensive process. Since the need to quickly determine the quality of translation increases, its automation is required. In this paper, we propose a quality assessment method based on ensemble supervised machine learning methods. The bilingual corpus WMT 2019 for the EnglishRussian language pair was used as data. The text data volume is 17089 sentences, 85% of the data was used for training, and 15% for testing the model. Linguistic functions extracted from the text in the source and target languages were used as features for training the system, since it is these characteristics that can most accurately characterize the translation in terms of quality. The following tools were used for feature extraction: a free language modeling tool based on SRILM and a Stanford POS Tagger parts of speech tagger. Before training the system, the text was preprocessed. The model was trained using three regression methods: Bagging, Extra Tree, and Random Forest. The algorithms were implemented in the Python programming language using the Scikit learn library. The parameters of the random forest method have been optimized using a grid search. The performance of the model was assessed by the mean absolute error MAE and the root mean square error RMSE, as well as by the Pearsоn coefficient, which determines the correlation with human judgment. Testing was carried out using three machine translation systems: Google and Bing neural systems, Mouses statistical machine translation systems based on phrases and based on syntax. Based on the results of the work, the method of additional trees showed itself best. In addition, for all categories of indicators under consideration, the best results are achieved using the Google machine translation system. The developed method showed good results close to human judgment. The system can be used for further research in the task of assessing the quality of translation.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050002
Author(s):  
Taichi Aida ◽  
Kazuhide Yamamoto

Current methods of neural machine translation may generate sentences with different levels of quality. Methods for automatically evaluating translation output from machine translation can be broadly classified into two types: a method that uses human post-edited translations for training an evaluation model, and a method that uses a reference translation that is the correct answer during evaluation. On the one hand, it is difficult to prepare post-edited translations because it is necessary to tag each word in comparison with the original translated sentences. On the other hand, users who actually employ the machine translation system do not have a correct reference translation. Therefore, we propose a method that trains the evaluation model without using human post-edited sentences and in the test set, estimates the quality of output sentences without using reference translations. We define some indices and predict the quality of translations with a regression model. For the quality of the translated sentences, we employ the BLEU score calculated from the number of word [Formula: see text]-gram matches between the translated sentence and the reference translation. After that, we compute the correlation between quality scores predicted by our method and BLEU actually computed from references. According to the experimental results, the correlation with BLEU is the highest when XGBoost uses all the indices. Moreover, looking at each index, we find that the sentence log-likelihood and the model uncertainty, which are based on the joint probability of generating the translated sentence, are important in BLEU estimation.


2019 ◽  
Vol 9 (1) ◽  
pp. 268-278 ◽  
Author(s):  
Benyamin Ahmadnia ◽  
Bonnie J. Dorr

AbstractThe quality of Neural Machine Translation (NMT), as a data-driven approach, massively depends on quantity, quality and relevance of the training dataset. Such approaches have achieved promising results for bilingually high-resource scenarios but are inadequate for low-resource conditions. Generally, the NMT systems learn from millions of words from bilingual training dataset. However, human labeling process is very costly and time consuming. In this paper, we describe a round-trip training approach to bilingual low-resource NMT that takes advantage of monolingual datasets to address training data bottleneck, thus augmenting translation quality. We conduct detailed experiments on English-Spanish as a high-resource language pair as well as Persian-Spanish as a low-resource language pair. Experimental results show that this competitive approach outperforms the baseline systems and improves translation quality.


Literator ◽  
2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Nomsa J. Skosana ◽  
Respect Mlambo

The scarcity of adequate resources for South African languages poses a huge challenge for their functional development in specialised fields such as science and technology. The study examines the Autshumato Machine Translation (MT) Web Service, created by the Centre for Text Technology at the North-West University. This software supports both formal and informal translations as a machine-aided human translation tool. We investigate the system in terms of its advantages and limitations and suggest possible solutions for South African languages. The results show that the system is essential as it offers high-speed translation and operates as an open-source platform. It also provides multiple translations from sentences, documents and web pages. Some South African languages were included whilst others were excluded and we find this to be a limitation of the system. We also find that the system was trained with a limited amount of data, and this has an adverse effect on the quality of the output. The study suggests that adding specialised parallel corpora from various contemporary fields for all official languages and involving language experts in the pre-editing of training data can be a major step towards improving the quality of the system’s output. The study also outlines that developers should consider integrating the system with other natural language processing applications. Finally, the initiatives discussed in this study will help to improve this MT system to be a more effective translation tool for all the official languages of South Africa.


2020 ◽  
Author(s):  
Adrián Fuentes-Luque ◽  
Alexandra Santamaría Urbieta

Computer-assisted translation tools are increasingly supplemented by the presence of machine translation (MT) in different areas and working environments, from technical translation to translation in international organizations. MT is also present in the translation of tourism texts, from brochures to food menus, websites and tourist guides. Its need or suitability for use is the subject of growing debate. This article presents a comparative analysis of tourist guides translated by a human translator and three machine translation systems. The aims are to determine a first approach to the level of quality of machine translation in tourist texts and to establish whether some tourist texts can be translated using machine translation alone or whether human participation is necessary, either for the complete translation of the text or only for post-editing tasks.


Sign in / Sign up

Export Citation Format

Share Document