scholarly journals Stability Analysis of Rice Hybrids for Grain Yield in Telangana through AMMI and GGE Bi-plot Model

2021 ◽  
Vol 12 (6) ◽  
pp. 687-695
Author(s):  
Y. Chandra Mohan ◽  
◽  
L. Krishna ◽  
S. Sreedhar ◽  
B. Satish Chandra ◽  
...  

An investigation was carried out on fifteen rice genotypes to identify stable rice hybrids across six different agroclimatic zones in Telangana state using AMMI and GGE bi-plot analyses during July to November, 2020. Analysis of variance clearly showed that environments contributed highest (65.47%) in total sum of squares followed by genotypes×environments (21.19%) indicating very greater role played by environments and their interactions in realizing final grain yield. AMMI analysis revealed that rice hybrids viz., RNRH 39 (G6), 27P31 (G14) and RNRH 15 (G1) were recorded higher mean grain yield with positive IPCA1 scores. The hybrids, JGLH 275 (G11) and JGLH 365 (G15) were plotted near to zero IPCA1 axis indicating that these hybrids are relatively more stable across locations. GGE bi-plot genotype view depicts that the hybrids, JGLH 365 (G15) and US 314 (G8) were inside the first concentric circle and found to be more stable across environments. GGE bi-plot environment view showed that Rudrur (E4) location was the most ideal environment. However, Warangal (E6) and Jagtial (E1) locations were poor and most discriminating. Depending on dispersion of environments in different directions, six locations were partitioned into three mega zones as first zone comprised of four locations viz., Kunaram (E2), Kampasagar (E3), Rudrur (E4) and Rajendranagar (E5) whereas highly dispersed Jagtial (E1) and Warangal (E6) were identified as two separate mega environments. The bi-plot view identified that 27P31 (G14), JGL 24423 (G2) and RNRH 39 (G6) were the best performing genotypes in first zone comprising four locations.

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2136
Author(s):  
Mohammad Rafiqul Islam ◽  
Bikas Chandra Sarker ◽  
Mohammad Ashraful Alam ◽  
Talha Javed ◽  
Mohammad Jahangir Alam ◽  
...  

Water deficit stress is a critical abiotic constraint to mung bean production that affects plant growth and development and finally reduces crop yield. Therefore, a field experiment was conducted at five diverse environments using four water stress-tolerant genotypes, namely BARI Mung-8, BMX-08010-2, BMX-010015, and BMX-08009-7, along with two popular cultivated varieties (check) of BARI Mung-6 and BARI Mung-7 to evaluate more stable tolerant genotypes across the country. Stability analysis was performed based on the grain yield. The combined analysis of variance showed significant variations among genotypes, environments, and their interactions. The AMMI analysis of variance indicated that genotype accounted for 91% of the total sum of squares for grain yield, followed by genotype × environment interaction (5%), and environment (4%). Partitioning of interaction indicated that the first three interaction principal components (IPCA1–IPCA3) were highly significant (p ≤ 0.01). Using these significant IPCAs, AMMI stability parameters and non-parameter indices BMX-010015 was found stable across the environment based on yield traits and grain yield. The BMX-08010-2 genotype also showed significant regression coefficient (bi) more than unity, and non-significant deviation from regression (S2di) values, indicating suitable for a favorable environment considering grain yield. So, based on the stability analysis (Eberhart and Russell), additive main effects, and multiplicative interactions (AMMI) analysis, the BMX-010015 and BMX-08010-2 could be suitable for having tolerance to water deficit stress.


2021 ◽  
Author(s):  
Marium Khatun ◽  
A. K. M. Aminul Islam ◽  
M. Rafiqul Islam ◽  
M. A. Rahman Khan ◽  
M. Kamal Hossain

Abstract During the 2018-2019 Boro season (dry season), 70 rice genotypes were examined with alpha lattice experimental design with the goal of measuring grain yield stability analysis. Results indicated that AMMI analysis explained 100% of the G×E variance, while captured 81.74% variance. Based on the GGE and AMMI analysis, the most stable and high yielding genotype was identified G41 followed by G22, G26, G58, G24 and G61. The AMMI 1 biplot analysis revealed that the first primary component of interaction (IPC1) factor was responsible for 64.2 % variation due to G × E interaction. On other hand, the second primary component (PC2) factor accounted for 35.8% variation of the G × E interaction. These two-primary component (PC1 and PC2), all together accounted for 100% variation of the G × E interaction. The contribution of G68 was highest to the interaction followed by G70, G58, G42, G61, G45, G38, G14, G33, G60, G53, and G9. Best environment analysis indicated that the ranking was Rajshahi < Gazipur < Cumilla. GGE biplot analysis accounted for 81.74% variation comprising two principal components PC1 and PC2 with 45.62% and 36.12% variations respectively. Rajshahi was more stable than Gazipur. Based on environment analysis genotypes, G22, G26, G58, and G44 can be recommended as best stable genotypes that breeding zone. However, the genotype G61 was identified adapted to Cumilla breeding zone.


Author(s):  
N. Lingaiah ◽  
A. Sudharshanam ◽  
V. Thirumala Rao ◽  
Y. Prashant ◽  
M. Vijay Kumar ◽  
...  

The objective of this study was to determine the genotype × environment interaction (GEI) and stability performance of eight promising cotton genotypes at four agro-ecologies in Telangana State. The experimental material consisting of eight genotypes were planted in randomized block design replicating thrice in four diverse environments of Telangana state during 2017, Kharif season. The present investigation was carried out in four diverse environments of Telangana state viz. RARS, Warangal, ARS, Adilabad, ARS, Modhole and RARS, Palem (Professor Jayashankar Telangana State Agricultural University) during 2017, Kharif season. The study was conducted at four diversified agro-ecologies of Telangana State. The experimental material comprised of eight genotypes viz., WGCV-109, ADB-638, WGCV-122, Narasimha, WGCV-119, WGCV-119, Srirama, WGCV-48 and ADB 645. First pooled analysis of variance was carried out to know the significance variation in genotype x environment interaction followed by AMMI analysis for genotype x environment interaction studies. Analysis of variance was significant for environments and (G x E) components indicating the use fullness of AMMI analysis in identifying the stable genotypes.  Among the eight cotton genotypes, WGCV-109, Narasimha and ADB-645 were found to be best yielders over environments whereas the genotypes G7 (WGCV-48) and G4 (Narasimha) found to be stable. Most of the genotypes showed environment specificity. As a result, almost all of the evaluated genotypes were affected by the genotype x environment interaction effects, hence no genotype had superior performance in all environments.  


2021 ◽  
Author(s):  
Kristina Lukovic ◽  
◽  
Veselinka Zečevic ◽  
Vladimir Perišic ◽  
Milivoje Milovanovic ◽  
...  

In these investigations, the yield stability of 14 winter bread wheat genotypes were analyzed. The experimental part of the trial was performed at three locations (Kragujevac, Kruševac and Sombor) during 2013/2014. AMMI analysis of variance for grain yield showed that all sources of variation (genotype, environment, their interaction) had a significant effect on the expression of this complex trait. In the total variation of the experiment, the largest contribution had genotype/enviroment interaction, and genotype had the least. The most stable genotypes have been identified, which can be considered as a desirable genotypes, widely adapted to different agroecological conditions.


2014 ◽  
Vol 8 ◽  
pp. 14-17 ◽  
Author(s):  
Hari K. Upreti ◽  
Sudarshan Bista ◽  
Surya N. Sah ◽  
Ramesh Dhakal

Genotype x Environment interaction limits the effectiveness of selection when selection is based only on mean yield. This G × E interaction was studied for grain yield in 7 genotypes  of mid-hill rice in five different environments across the Nepal. Significant difference was observed among genotype (G), environment (E) and interaction (G × E) but could not identify the stable high yielding genotypes for diverse environments. Therefore, stability parameters were calculated and analyzed. On the basis of stability parameters, two genotypes, NR 10414, NR 10492 and NR 10515 were found to be most stable over different environments. NR 10353 was identified as suitable genotypes with high grain yield for favorable environment.Nepal Agric. Res. J. Vol. 8, 2007, pp. 14-17DOI: http://dx.doi.org/10.3126/narj.v8i0.11565


1970 ◽  
Vol 19 (2) ◽  
pp. 181-187
Author(s):  
MR Islam ◽  
PK Saha ◽  
SK Zaman ◽  
MJ Uddin

Five phosphorus rates (0, 5, 10, 20 and 30 kg P/ha) were tested with four rice genotypes in Boro (BRRI dhan36, BRRI dhan45, EH1 and EH2) and T. Aman (BRRI dhan30, BRRI dhan49, EH1 and EH2) season. Phosphorus rates did not influence grain yield irrespective of varieties in T. Aman season while in Boro season P response was observed among the P rates. Application of P @ 10 kg/ha significantly increased the grain yield. But when P was applied @ 20 and 30 kg P/ha, the grain yield difference was not significant. The optimum and economic rate of P for T. Aman was 20 kg P/ha but in Boro rice the optimum and economic doses of P were 22 and 30 kg/ha, respectively. Hybrid entries (EH1 and EH2) used P more efficiently than inbred varieties. A negative P balance was observed up to 10 kg P/ha. Key words: Response; Phosphorus fertilizer; Inbred; Hybrid rice DOI: http://dx.doi.org/10.3329/dujbs.v19i2.8962 DUJBS 2010; 19(2): 181-187


Author(s):  
Om Prakash Yadav ◽  
A. K. Razdan ◽  
Bupesh Kumar ◽  
Praveen Singh ◽  
Anjani K. Singh

Genotype by environment interaction (GEI) of 18 barley varieties was assessed during two successive rabi crop seasons so as to identify high yielding and stable barley varieties. AMMI analysis showed that genotypes (G), environment (E) and GEI accounted for 1672.35, 78.25 and 20.51 of total variance, respectively. Partitioning of sum of squares due to GEI revealed significance of interaction principal component axis IPCA1 only On the basis of AMMI biplot analysis DWRB 137 (41.03qha–1), RD 2715 (32.54qha–1), BH 902 (37.53qha–1) and RD 2907 (33.29qha–1) exhibited grain yield superiority of 64.45, 30.42, 50.42 and 33.42 per cent, respectively over farmers’ recycled variety (24.43qha–1).


2019 ◽  
Vol 4 (2) ◽  
pp. 165-180
Author(s):  
Sh.A. El-Shamarka ◽  
I.H. Darwesh ◽  
M.A. AboShereif ◽  
A.N. Kahalil

Sign in / Sign up

Export Citation Format

Share Document