Robust Nash Equilibrium Strategy for Uncertain Markov Jump Linear Stochastic Systems

Author(s):  
Hiroaki Mukaidani
2017 ◽  
Vol 4 (11) ◽  
pp. 171361 ◽  
Author(s):  
Ramón Alonso-Sanz

This article studies correlated two-person games constructed from games with independent players as proposed in Iqbal et al. (2016 R. Soc. open sci. 3 , 150477. ( doi:10.1098/rsos.150477 )). The games are played in a collective manner, both in a two-dimensional lattice where the players interact with their neighbours, and with players interacting at random. Four game types are scrutinized in iterated games where the players are allowed to change their strategies, adopting that of their best paid mate neighbour. Particular attention is paid in the study to the effect of a variable degree of correlation on Nash equilibrium strategy pairs.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 995 ◽  
Author(s):  
Zeng ◽  
Liu ◽  
Wang ◽  
Lan

In the cognitive radio network (CRN), secondary users (SUs) compete for limited spectrum resources, so the spectrum access process of SUs can be regarded as a non-cooperative game. With enough artificial intelligence (AI), SUs can adopt certain spectrum access strategies through their learning ability, so as to improve their own benefit. Taking into account the impatience of the SUs with the waiting time to access the spectrum and the fact that the primary users (PUs) have preemptive priority to use the licensed spectrum in the CRN, this paper proposed the repairable queueing model with balking and reneging to investigate the spectrum access. Based on the utility function from an economic perspective, the relationship between the Nash equilibrium and the socially optimal spectrum access strategy of SUs was studied through the analysis of the system model. Then a reasonable spectrum pricing scheme was proposed to maximize the social benefits. Simulation results show that the proposed access mechanism can realize the consistency of Nash equilibrium strategy and social optimal strategy to maximize the benefits of the whole cognitive system.


2014 ◽  
Vol 51 (2) ◽  
pp. 436-452
Author(s):  
Shangzhen Luo

In this paper we study a reinsurance game between two insurers whose surplus processes are modeled by arithmetic Brownian motions. We assume a minimax criterion in the game. One insurer tries to maximize the probability of absolute dominance while the other tries to minimize it through reinsurance control. Here absolute dominance is defined as the event that liminf of the difference of the surplus levels tends to -∞. Under suitable parameter conditions, the game is solved with the value function and the Nash equilibrium strategy given in explicit form.


2014 ◽  
Vol 51 (02) ◽  
pp. 436-452 ◽  
Author(s):  
Shangzhen Luo

In this paper we study a reinsurance game between two insurers whose surplus processes are modeled by arithmetic Brownian motions. We assume a minimax criterion in the game. One insurer tries to maximize the probability of absolute dominance while the other tries to minimize it through reinsurance control. Here absolute dominance is defined as the event that liminf of the difference of the surplus levels tends to -∞. Under suitable parameter conditions, the game is solved with the value function and the Nash equilibrium strategy given in explicit form.


Sign in / Sign up

Export Citation Format

Share Document