A Flush-mounted Ultra-wideband Scanning Phased Array with End-fire Radiation Pattern

Author(s):  
Haotian Li ◽  
Yikai Chen ◽  
Shiwen Yang ◽  
Guo Liu ◽  
Shangwei Gao
2021 ◽  
Vol 66 (4) ◽  
pp. 427-432
Author(s):  
V. I. Gusevskii ◽  
M. D. Duplenkova ◽  
O. N. Tsvetkova

2018 ◽  
Vol 7 (2.16) ◽  
pp. 11
Author(s):  
Sanjeev Kumar ◽  
Ravi Kumar ◽  
Rajesh Kumar Vishwakarma

A microstrip antenna with a circular disc design and modified ground is proposed in this paper. Circular shapes of different size have been slotted out from the radiating patch for achieving extended ultra wideband (UWB) with GSM/Bluetooth bands with maximum bandwidth of 17.7 GHz (0.88-18.6 GHz). Further, characteristic of dual notch band is achieved, when a combination of T and L-shaped slots are etched into the circular disc and ground plane respectively. Change in length of slots is controlling the notch band characteristics. The proposed antenna has rejection bandwidth of 1.3-2.2 GHz (LTE band), 3.2-3.9 GHz (WiMAX band) and 5.2-6.1 GHz (WLAN band) respectively. It covers the frequency range of 0.88-18.5 GHz with the VSWR of less than 2. Also, an equivalent parallel resonant circuit has been demonstrated for band notched frequencies of the designed antenna. The gain achieved by the proposed antenna is 6.27 dBi. This antenna has been designed, investigated and fabricated for GSM, Bluetooth, UWB, X and Ku band applications. The stable gain including H & E-plane radiation pattern with good directivity and omnidirectional behavior is achieved by the proposed antenna. Measured bandwidths are 0.5 GHz, 0.8 GHz, 1.1 GHz and 11.7 GHz respectively. 


This paper presents a novel, compact Ultra Wide Band , Asymmetric Ring Rectangular Dielectric Resonator Antenna (ARRDRA), which is a unique combination of Thin Dielectric Resonator (DR), Fork shape patch and defective ground structure. The base of the proposed antenna is its Hybrid structure, which generates fundamental TM, TE and higher order modes that yields an impedance bandwidth of 119%. Proposed antenna provides a frequency range from 4.2 to 16.6 GHz with a stable radiation pattern and low cross polarization levels. Peak gain of 5.5 dB and average efficiency of 90% is obtained by the design. Antenna is elongated on a FR4 substrate of dimension 20 x 24x 2.168 mm3 and is particularly suitable for C band INSAT, Radio Altimeter, WLAN, Wi-Fi for high frequencies. Ease in fabrication due to simplicity, compactness, stable radiation pattern throughout the entire bandwidth are the key features of the presented design. Inclusion of Defective ground structure and asymmetric ring not only increases the bandwidth but also stabilize the gain and efficiency due to less surface current. Presented design launch an Ultra Wide Band antenna with sufficient band rejection at 4.48-5.34 and 5.64-8.33 GHz with stable radiation pattern and high gain.


2020 ◽  
Vol 19 (1) ◽  
pp. 168-172 ◽  
Author(s):  
Zhanling Wang ◽  
Chen Pang ◽  
Yongzhen Li ◽  
Xuesong Wang

2014 ◽  
Vol 69 (2) ◽  
Author(s):  
M. S. M. Isa ◽  
R. J. Langley ◽  
S. Khamas ◽  
A. A. M. Isa ◽  
M. S. I. M. Zin ◽  
...  

In this paper, the planar phased array antenna scan blindness characteristic has been analyzed and a novel technique of eliminating the scan blindness for the phased array antenna has been introduced. The scan blindness of the center element has been used to present the entire phased array characteristic. The array scan blindness characteristics have been simulated and analyzed using CST Microwave Studio (CST MWS). The 5×3 planar phased array antenna radiation patterns against the pattern elevation angle direction has been simulated and compiled. The array’s scan blindness has been determined at the angle of approximately 47⁰. The miniaturized capacitive loaded Electromagnetic Band Gap (EBG) has been developed and introduced between the array elements to eliminate the problem. Based on the simulated results, it is shown that the use of a miniaturized EBG is effective in reducing the surface wave effects and eliminates the scan blindness in the array radiation pattern. This novel finding is very useful to improve the antenna directive efficiency for the directional radar and satellite application.


2005 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Dirk Manteuffel

This paper presents some considerations on the design, characterization and optimization of UWB (Ultra WideBand) antennas for consumer communication equipment. As a first step a method to extract the spatio-temporal UWB antenna characterization from a FDTD simulation is given. Thereafter, the shape of a planar monopole is optimized to provide broadband matching. This is followed by the integration of latter antenna into a model of a DVD player and the impact of this integration on the antenna performance is evaluated. Finally, the transfer function of the complete system is extracted and used for indoor propagation modeling in an exemplary living home environment. The results show that the antenna integration into the DVD-chassis results into a directive radiation pattern that shows a significant frequency dependency. When this antenna is used for the propagation modeling, a single frequency ray-tracing simulation shows significant variation in the radiated power distribution in the room as a result of the directive pattern. When the received power is averaged over a larger bandwidth, the coverage becomes more smooth mainly due to the frequency dependency of the radiation pattern and frequency dependent propagation effects. Indeed, comparing the results of the integrated antenna to the case of the ideal isotropic radiator, no major disadvantages can be discerned anymore.


Sign in / Sign up

Export Citation Format

Share Document