Adaptive Impedance Control Method for Industrial Manipulator Writing Based on Kalman Filter

Author(s):  
Qidan Zhu ◽  
Xinru Xie ◽  
Chao Li ◽  
Guihua Xia
2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110040
Author(s):  
Haibo Zhou ◽  
Shitai Ma ◽  
Guilian Wang ◽  
Yuxin Deng ◽  
Zhenzhong Liu

In order to realize the active and compliant motion of the robot, it is necessary to eliminate the impact caused by processing contact. A hybrid control strategy for grinding and polishing robot is proposed based on adaptive impedance control. Firstly, an electrically driven linear end effector is designed for the robot system. The macro and micro motions control model of the robot is established, by using impedance control method, which based on the contact model of the robot system and the environment. Secondly, the active compliance method is adopted to establish adaptive force control and position tracking control strategies under impact conditions. Finally, the algorithm is verified by Simulink simulation and experiment. The simulation results are as follows: The position tracking error does not exceed 0.009 m, and the steady-state error of the force is less than 1 N. The experimental results show that the motion curve coincides with the surface morphology of the workpiece, and the contact force is stable at 10 ± 3 N. The algorithm can realize more accurate position tracking and force tracking, and provide a reference for the grinding and polishing robot to realize surface processing.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Satoshi Suzuki ◽  
Katsuhisa Furuta

Adaptive assistive control for a haptic interface system is proposed in the present paper. The assistive control system consists of three subsystems: a servo controller to match the response of the controlled machine to the virtual model, an online identifier of the operator’s control characteristics, and a variable dynamics control using adaptive mechanism. The adaptive mechanism tunes an impedance of the virtual model for the haptic device according to the identified operator’s characteristics so as to enhance the operator’s control performance. The adaptive law is derived by utilizing a Lyapunov candidate function. Using a haptic interface device composed by axy-stage, an effectiveness of the proposed control method was evaluated experimentally. As a result, it was confirmed that the operator’s characteristics can be estimated sufficiently and that performance of the operation was enhanced by the variable dynamics assistive control.


2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


2016 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Malek Njah ◽  
Mohamed Jallouli

AbstractThe electric wheelchair gives more autonomy and facilitates movement for handicapped persons in the home or in a hospital. Among the problems faced by these persons are collision with obstacles, the doorway, the navigation in a hallway, and reaching the desired place. These problems are due to the difficult manipulation of an electric wheelchair, especially for persons with severe disabilities. Hence, we tried to add more functionality to the standard wheelchair in order to increase movement range, security, environment access, and comfort. In this context, we have developed an automatic control method for indoor navigation. The proposed control system is mounted on the electric wheelchair for the handicapped, developed in the research laboratory CEMLab (Control and Energy Management Laboratory-Tunisia). The proposed method is based on two fuzzy controllers that ensure target achievement and obstacle avoidance. Furthermore, an extended Kalman filter was used to provide precise measurements and more effective data fusion localization. In this paper, we present the simulation and experimental results of the wheelchair navigation system.


2011 ◽  
Vol 520 (4) ◽  
pp. 1178-1181 ◽  
Author(s):  
Yu Muto ◽  
Nobuto Oka ◽  
Naoki Tsukamoto ◽  
Yoshinori Iwabuchi ◽  
Hidefumi Kotsubo ◽  
...  

2019 ◽  
Vol 112 ◽  
pp. 98-108 ◽  
Author(s):  
Guido G. Peña ◽  
Leonardo J. Consoni ◽  
Wilian M. dos Santos ◽  
Adriano A.G. Siqueira

Sign in / Sign up

Export Citation Format

Share Document