Inference of Ventricular Activation Properties from Twelve-lead Electrocardiogram

Author(s):  
Julia Camps ◽  
Brodie Lawson ◽  
Christopher Drovandi ◽  
Ana Minchole ◽  
Zhinuo Jenny Wang ◽  
...  
2021 ◽  
pp. 102143
Author(s):  
Julia Camps ◽  
Brodie Lawson ◽  
Christopher Drovandi ◽  
Ana Minchole ◽  
Zhinuo Jenny Wang ◽  
...  

2004 ◽  
Vol 52 (Suppl 2) ◽  
pp. S357.3-S357
Author(s):  
D. Xing ◽  
F. G. Devecchi ◽  
T. R. Staley ◽  
D. S. Glassman ◽  
J. B. Martins

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K Miyajima ◽  
T Urushida ◽  
K Ito ◽  
F Kin ◽  
A Okazaki ◽  
...  

Abstract Background Right ventricular (RV) septal pacing is often selected to preserve a more physiologic ventricular activation. But the pacing leads are not always located in true septal wall, rather in hinge or free wall in some cases with the conventional stylet-guided lead implantation. In recent years, new guiding catheter systems has attracted attention as a solution to that problem. Objective The aim of this study is to investigate that true ventricular sepal pacing can be achieved by use of the new guiding catheter system for pacing lead. Methods We enrolled 198 patients who underwent RV septal lead implantation and computed tomography (CT) after pacemaker implantation. 16 cases were used delivery catheter (Delivery), and 182 cases were used stylet for targeting ventricular septum (Conventional). We analyzed the lead locations with CT, and evaluated capture thresholds, R-wave amplitudes, lead impedances and 12-lead electrocardiogram findings one month after implantation. Results All cases of delivery catheter group had true septal lead positions (Delivery; 100% vs Conventional; 44%, p<0.01). Capture thresholds and lead impedances had not significant differences between between two groups (0.65±0.15V vs 0.60±0.15V, p=0.21, 570±95Ω vs 595±107Ω, p=0.39, respectively). R-wave amplitudes were significantly higher in delivery catheter group (13.0±4.8mV vs 10±4.6mV, p<0.01). Paced QRS durations were shorter in delivery catheter group (128±16ms vs 150±21ms, p<0.01). Conclusions The delivery catheter system designated for pacing lead can contribute to select the true ventricular septal sites and to attain the more physiologic ventricular activation. Funding Acknowledgement Type of funding source: None


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
F Zanon ◽  
L Marcantoni ◽  
G Pastore ◽  
E Baracca ◽  
C Picariello ◽  
...  

Abstract Introduction His bundle pacing (HBP) allows physiological ventricular activation and prevents the electrical and mechanical desynchronization generally induced by myocardial stimulation, which can increase the risk of atrial fibrillation and heart failure. On the other hand, reliable HBP capture often requires higher energy than conventional myocardial pacing. This reduces the expected life of the stimulator and might limit the diffusion of HBP in the clinical practice. Purpose Decreasing HBP current drain by careful management of stimulation safety margin and pulse duration. Methods In 28 patients undergoing DDD pacing with HBP, a third lead was implanted in RV apex to provide back-up pacing on demand. HBP and apical leads were connected, respectively, to the V1 and V2 channels of a 3-chamber stimulator. When HBP was effective, apical sensing occurred within the VV delay and prevented V2 stimulation. In contrast, in case of HBP failure, V2 sensing was missing and apical back-up pacing was promptly delivered at the end of the VV delay. The availability of a back-up pulse on demand allowed reducing the HBP safety margin with no risk. Furthermore, the individual HBP strength-duration curve was derived in the aim of optimizing the Hisian pulse parameters, which are the major determinants of the device current drain. Results Correct back-up inhibition by successful HBP and stimulation in the event of capture loss was achieved in all the patients. The latency from Hisian pacing to apical sensing averaged 96±14 ms. According to the pacemaker counters, no back-up pulse was delivered in daily life in 59% of patients. In the remaining, the prevalence of back-up stimulation never exceeded 15% of paced ventricular cycles. The high HBP threshold was essentially due to an increased rheobase (1.2±0.6 V), while the chronaxie ranged from 0.30 to 0.53 ms in 71% of patients (median 0.44 ms), exceeding 0.6 ms only in 29% of the cases. An average current saving of 5.4±3.0 μA was obtained at the expense of a mild reduction in HBP safety margin (from 1.6±0.2 to 1.4±0.1 times). HBP and apical back-up Conclusions Back-up stimulation on demand is a reliable option to decrease HBP current drain and prolong the stimulator service life with full safety. In most of the cases, significant saving can be achieved by pulse shortening, as the chronaxie time is in the same range as with myocardial stimulation and longer pulses are not required. A pulse duration exceeding 0.6 ms is indicated in less than 1/3 of the implants.


2021 ◽  
Vol 10 (4) ◽  
pp. 822
Author(s):  
Luuk I.B. Heckman ◽  
Justin G.L.M. Luermans ◽  
Karol Curila ◽  
Antonius M.W. Van Stipdonk ◽  
Sjoerd Westra ◽  
...  

Background: Left bundle branch area pacing (LBBAP) has recently been introduced as a novel physiological pacing strategy. Within LBBAP, distinction is made between left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP, no left bundle capture). Objective: To investigate acute electrophysiological effects of LBBP and LVSP as compared to intrinsic ventricular conduction. Methods: Fifty patients with normal cardiac function and pacemaker indication for bradycardia underwent LBBAP. Electrocardiography (ECG) characteristics were evaluated during pacing at various depths within the septum: starting at the right ventricular (RV) side of the septum: the last position with QS morphology, the first position with r’ morphology, LVSP and—in patients where left bundle branch (LBB) capture was achieved—LBBP. From the ECG’s QRS duration and QRS morphology in lead V1, the stimulus- left ventricular activation time left ventricular activation time (LVAT) interval were measured. After conversion of the ECG into vectorcardiogram (VCG) (Kors conversion matrix), QRS area and QRS vector in transverse plane (Azimuth) were determined. Results: QRS area significantly decreased from 82 ± 29 µVs during RV septal pacing (RVSP) to 46 ± 12 µVs during LVSP. In the subgroup where LBB capture was achieved (n = 31), QRS area significantly decreased from 46 ± 17 µVs during LVSP to 38 ± 15 µVs during LBBP, while LVAT was not significantly different between LVSP and LBBP. In patients with normal ventricular activation and narrow QRS, QRS area during LBBP was not significantly different from that during intrinsic activation (37 ± 16 vs. 35 ± 19 µVs, respectively). The Azimuth significantly changed from RVSP (−46 ± 33°) to LVSP (19 ± 16°) and LBBP (−22 ± 14°). The Azimuth during both LVSP and LBBP were not significantly different from normal ventricular activation. QRS area and LVAT correlated moderately (Spearman’s R = 0.58). Conclusions: ECG and VCG indices demonstrate that both LVSP and LBBP improve ventricular dyssynchrony considerably as compared to RVSP, to values close to normal ventricular activation. LBBP seems to result in a small, but significant, improvement in ventricular synchrony as compared to LVSP.


Author(s):  
Karli Gillette ◽  
Matthias A. F. Gsell ◽  
Julien Bouyssier ◽  
Anton J. Prassl ◽  
Aurel Neic ◽  
...  

AbstractPersonalized models of cardiac electrophysiology (EP) that match clinical observation with high fidelity, referred to as cardiac digital twins (CDTs), show promise as a tool for tailoring cardiac precision therapies. Building CDTs of cardiac EP relies on the ability of models to replicate the ventricular activation sequence under a broad range of conditions. Of pivotal importance is the His–Purkinje system (HPS) within the ventricles. Workflows for the generation and incorporation of HPS models are needed for use in cardiac digital twinning pipelines that aim to minimize the misfit between model predictions and clinical data such as the 12 lead electrocardiogram (ECG). We thus develop an automated two stage approach for HPS personalization. A fascicular-based model is first introduced that modulates the endocardial Purkinje network. Only emergent features of sites of earliest activation within the ventricular myocardium and a fast-conducting sub-endocardial layer are accounted for. It is then replaced by a topologically realistic Purkinje-based representation of the HPS. Feasibility of the approach is demonstrated. Equivalence between both HPS model representations is investigated by comparing activation patterns and 12 lead ECGs under both sinus rhythm and right-ventricular apical pacing. Predominant ECG morphology is preserved by both HPS models under sinus conditions, but elucidates differences during pacing.


2001 ◽  
Vol 12 (5) ◽  
pp. 570-577 ◽  
Author(s):  
PRAVINA M. PATEL ◽  
ALEXEI PLOTNIKOV ◽  
PRAPA KANAGARATNAM ◽  
ALEXEI SHVILKIN ◽  
CATHERINE T. SHEEHAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document