Monitoring the hydraulic stability of Antifer blocks: an IoT-based approach

Author(s):  
Jorge Neiva ◽  
Sara Paiva ◽  
Sergio I. Lopes
Keyword(s):  
1988 ◽  
Vol 1 (21) ◽  
pp. 176
Author(s):  
C. David Anglin ◽  
William F. Baird ◽  
Etienne P.D. Mansard ◽  
R. Douglas Scott ◽  
David J. Turcke

There is a general lack of knowledge regarding the nature and magnitude of loads acting on armour units used for the protection of rubblemound coastal structures. Thus, a comprehensive design procedure incorporating both the hydraulic stability and the structural integrity of the armour units does not exist. This paper presents the results of a detailed parametric study of the structural response of armour units to wave-induced loading in a physical breakwater model. The effect of the following design parameters is investigated: breakwater slope, armour unit location, wave period and wave height. This research has made a number of significant contributions towards the development of a comprehensive design procedure for concrete armour units. It has identified a linear relationship between the wave-induced stress in the armour units and the incident wave height. In addition, it has shown that the conditional probability of waveinduced stress given wave height can be estimated by a log-normal distribution. Finally, a preliminary design chart has been developed which incorporates both the structural integrity and the hydraulic stability of the armour units.


2015 ◽  
Vol 2 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Jun Oh Oh ◽  
Sang Mi Jun ◽  
Jae Hyeon Park
Keyword(s):  

2021 ◽  
Vol 7 (4) ◽  
pp. 311-318
Author(s):  
Artavazd M. Sujyan ◽  
Viktor I. Deev ◽  
Vladimir S. Kharitonov

The paper presents a review of modern studies on the potential types of coolant flow instabilities in the supercritical water reactor core. These instabilities have a negative impact on the operational safety of nuclear power plants. Despite the impressive number of computational works devoted to this topic, there still remain unresolved problems. The main disadvantages of the models are associated with the use of one simulated channel instead of a system of two or more parallel channels, the lack consideration for neutronic feedbacks, and the problem of choosing the design ratios for the heat transfer coefficient and hydraulic resistance coefficient under conditions of supercritical water flow. For this reason, it was decided to conduct an analysis that will make it possible to highlight the indicated problems and, on their basis, to formulate general requirements for a model of a nuclear reactor with a light-water supercritical pressure coolant. Consideration is also given to the features of the coolant flow stability in the supercritical water reactor core. In conclusion, the authors note the importance of further computational work using complex models of neutronic thermal-hydraulic stability built on the basis of modern achievements in the field of neutron physics and thermal physics.


Author(s):  
Antonio Corredor Molguero ◽  
M. Esther Gómez-Martín ◽  
Enrique Peña ◽  
Josep R. Medina

This paper describes the design process, hydraulic stability tests and construction of the Cubipod® armored Western breakwater at Punta Langosteira (Outer Port of A Coruña, Spain), located on the Atlantic coast of Spain. The environmental, geotechnical, economic and logistic conditions favored randomly-placed Cubipods for single-layer armoring of the trunk. 3D hydraulic stability tests were carried out to validate the final design of the Western Breakwater; two models were tested with single- and double-layer Cubipod armors in the trunk and roundhead, respectively. Single-layer 25- and 30-tonne Cubipod® armors were used for the trunk section and a double-layer 45-tonne Cubipod® armor was used for the roundhead. During this project, new challenges were overcome, such as constructing a transition between single and double-layer armors, and manufacturing and handling of 45-tonne Cubipods. The transition in the armor thickness was solved by modifying the filter thickness under the main armor, to ensure a homogeneous external armor profile. Breakwater construction finished in November 2016 with no significant problem or delay in the original schedule.


Hydrology ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 29
Author(s):  
Tyler J. Carleton ◽  
Steven R. Fassnacht

Transbasin diversions and dams allow for water uses when and where there is high demand and low supply, but can come with an expense to the environment. This paper presents a linkage of hydrologic and hydraulic modeling and datasets to assess the hydrologic and hydraulic stability within a transbasin watershed as an approach for meeting water use targets and safeguarding environmental sustainability. The approach used a Prediction in Ungauged Basin (PUB) regionalization technique that completed the parameterization of a study watershed hydrologic model by transferring calibrated parameters from a reference watershed hydrologic model. This resulted in a long-term, simulated natural flow record that was compared to the measured modified flow record for the same time period to assess flow alteration. In the sensitive reach, hydraulic modeling results tracked channel response from before hydrologic modification to baseline using repeated survey years during the hydrologic modification. The combined assessment of hydrology and hydraulics highlighted the relation between flow regime and channel form.


2012 ◽  
Vol 238 ◽  
pp. 385-389
Author(s):  
Mei Jie Wang ◽  
Wei Min Di ◽  
Yan Ke Wang

Economy and hydraulic stability of piping network which has a fixed structure depend on the matching ability of pipe diameter. In order to improving the matching ability and maneuverability of selecting pipe diameter, a new design method is presented. A real case study shows that the piping network which is designed with the new method has excellent technical quality and the least life cycle costs, and can achieve saving more than 7 percent against the original design.


Sign in / Sign up

Export Citation Format

Share Document