A Max-Consensus Cyclic Pursuit Based Guidance Law for Simultaneous Target Interception

Author(s):  
Benjamin Zadka ◽  
Twinkle Tripathy ◽  
Ronny Tsalik ◽  
Tal Shima
Author(s):  
Nikhil Kumar Singh ◽  
Sikha Hota

This paper presents the nonstationary nonmaneuvering target interception with all possible desired impact angles in a two-dimensional (2D) aerial engagement scenario, where the target can move in any direction. The paper also considers the field-of-view (FOV) constraint for designing the guidance law so that the target is always visible while following the missile trajectory in the entire engagement time, which makes it feasible for real world applications. The guidance law is based on the pure proportional navigation (PPN) to achieve any impact angle of the entire angular spectrum. The proposed guidance law is then simulated for intercepting a nonstationary nonmaneuvering target using a kinematic model of a missile to demonstrate the efficacy of the presented scheme. A comparison with the related work existing in the literature has also been added to establish the superiority of the present work.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shizheng Wan ◽  
Xiaofei Chang ◽  
Quancheng Li ◽  
Jie Yan

For the problem of hypersonic target interception, a novel midcourse guidance method with terminal-angle constraint is proposed. Referring to the air-breathing and the boost-gliding hypersonic targets, flight characteristics and difficulties of interception are analyzed, respectively. The requirements of midcourse guidance for interceptors are provided additionally. The kinematics model of adversaries is established concerning line-of-sight coupling in longitudinal and lateral planes. Suboptimal guidance law with terminal-angle constraint, specifically the final line-of-sight angle or impact angle, is presented by means of model predictive static programming. The trajectory is optimized and the load factor would finally converge after penalizing control sequence and output deviations. The realization of terminal angle is firstly verified with a constant speed target. A full interception scenario is further simulated focusing on a typical boost-gliding target, which flies along a skipping trajectory. Results show the success of providing handover conditions for intercepting hypersonic targets.


Sign in / Sign up

Export Citation Format

Share Document