Currents and Power Losses of Induction Machine Under Voltage Interharmonics

Author(s):  
Piotr Gnacinski ◽  
Marcin Peplinski ◽  
Damian Hallmann
2007 ◽  
Author(s):  
Henrique B. Goncalves ◽  
Orlando F. Soares ◽  
Armando S. Araujo ◽  
Adriano S. Carvalho

2021 ◽  
Vol 8 (3) ◽  
pp. 444-453
Author(s):  
P. F. Gogolyuk ◽  
◽  
O. P. Hoholyuk ◽  
T. A. Kutsyk ◽  
◽  
...  

An universal mathematical model of an induction machine (IM) has been constructed, taking into account the saturation of the main magnetic circuit of its magnetic core and the active power losses. The proposed approach to IM modeling expands the abilities of MATLAB / Simulink environment for analysis of the electric power supply systems (microgrid in the smart grid) with the nonlinear elements and dynamic load in abnormal, asymmetric and fault regimes.


1988 ◽  
Vol 102 ◽  
pp. 165-174
Author(s):  
C. de Michelis

AbstractImpurities being an important concern in tokamaks, spectroscopy plays a key role in their understanding. Techniques for the evaluation of concentrations, power losses and transport properties are surveyed, and a few developments are outlined.


2020 ◽  
pp. 89-94 ◽  
Author(s):  
Ekaterina V. Lovlya ◽  
Oleg A. Popov

RF inductor power losses of ferrite-free electrode-less low pressure mercury inductively-coupled discharges excited in closed-loop dielectric tube were studied. The modelling was made within the framework of low pressure inductive discharge transformer model for discharge lamps with tubes of 16, 25 and 38 mm inner diam. filled with the mixture of mercury vapour (7.5×10–3 mm Hg) and argon (0.1, 0.3 and 1.0 mm Hg) at RF frequencies of 1, 7; 3.4 and 5.1 MHz and plasma power of (25–500) W. Discharges were excited with the help of the induction coil of 3, 4 and 6 turns placed along the inner perimeter of the closed-loop tube. It was found that the dependence of coil power losses, Pcoil, on the discharge plasma power, Ppl, had the minimum while Pcoil decreased with RF frequency, tube diameter and coil number of turns. The modelling results were found in good qualitative agreement with the experimental data; quantitative discrepancies are believed to be due skin-effect and RF electric field radial inhomogeneity that were not included in discharge modelling.


Sign in / Sign up

Export Citation Format

Share Document