inductive discharge
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 130 (3) ◽  
pp. 400
Author(s):  
А.М. Ражев ◽  
Е.С. Каргапольцев ◽  
И.А. Трунов

An efficient pulsed gas-discharge inductive CO2-laser with a radiation energy of 1.05 J has been developed for the first time. In this case, the pulse duration of the laser radiation was about 10 msec. The maximum efficiency of 21.1% was obtained at a radiation energy of 340 mJ. RF current pulses propagated along the inductor conductor and, thus, an inductive discharge was formed to create an inverse population at the infrared (IR) transitions of CO2* molecules. The temporal and energy characteristics of the radiation of the inductive CO2-laser depending on the duration of the pump pulse are investigated. The spatial characteristics and spectrum of the radiation of the developed laser are estimated. The divergence of the laser radiation was 0.52 mrad. The cross-sectional dimension of the laser output beam was about 35 mm in diameter.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012115
Author(s):  
M V Isupov

Abstract New experimental data on the plasma density profiles have been obtained for a low-frequency (100 kHz) distributed ferromagnetic enhanced inductive plasma source at different locations of inductive discharges. An ability to control the plasma density profiles in a large gas discharge chamber in order to achieve a uniform treatment of a substrate is demonstrated. The differences between the obtained results and literature data for a distributed ferromagnetic enhanced inductive plasma source combined with a radio-frequency inductive discharge are discussed.


2021 ◽  
Author(s):  
Shengyu Shi ◽  
Jiale Chen ◽  
Clarisse Bourdelle ◽  
Xiang Jian ◽  
Tomas Odstrcil ◽  
...  

Abstract The behavior of heavy/high-Z impurity tungsten (W) in an improved high-performance fully non-inductive discharge on EAST with ITER-like divertor (ILD) is analyzed. It is found that W could be well controlled. The causes of no W accumulation are clarified by analyzing the background plasma parameters and modeling the W transport. It turns out that the electron temperature (T_e) and its gradient are usually high while the toroidal rotation and density peaking of the bulk plasma are small. In this condition, the modeled W turbulent diffusion coefficient is big enough to offset the total turbulent and neoclassical pinch, so that W density profile for zero particle flux will not be very peaked. Combining NEO and TGLF for the W transport coefficient and the impurity transport code STRAHL, not only the core W density profile is predicted but also the radiated information mainly produced by W in the experiment can be closely reconstructed. At last, the physics of controlling W accumulation by electron cyclotron resonance heating (ECRH) is illustrated considering the effects of changed T_e by ECRH on ionization balance and transport of W. It shows that the change of ionization and recombination balance by changed T_e is not enough to explain the experimental observation of W behavior, which should be attributed to the changed W transport. By comparing the W transport coefficients in two kinds of plasmas with different T_e profiles, it is shown that high T_e and its gradient play a key role to generate large turbulent diffusion through increasing the growth rate of linear instability so that W accumulation is prevented.


Author(s):  
Elena Alexandrovna Kralkina ◽  
Polina Nekliudova ◽  
Aleksandr Nikonov ◽  
Konstantine Vavilin ◽  
Ilia ZADIRIEV ◽  
...  

Abstract Systematic experimental studies of the electron density and temperature, the efficiency of RF power coupling to the RF inductive discharge plasma have been carried out in the pressure range of helium, neon, argon, and krypton 0.1 – 133 Pa, at an RF generator power of 100 – 500 W and frequencies of 2, 4 and 13.56 MHz. It is shown that the electron density reaches a maximum, and the temperature reaches a minimum in the pressure range 1.33 – 13.3 Pa. Taking into account the presence of a parasitic capacitive coupling between the inductor and the plasma, which forms the capacitive channel of RF power input, makes it possible to conclude that the maximum values of the electron density were observed at the pressure at which the power input through the inductive channel is maximal. At pressures of the order of 0.133 Pa and below, an increase in the electron temperature is observed in the peripheral part of the discharge. Numerical modeling by the PIC method shows that one of the reasons is the formation of a directed azimuthal motion of electrons in the region of the skin layer. As the pressure increases, a transition occurs from the nonlocal to the local electron kinetics, which is reflected in the ratio between the electron temperature in the peripheral and central parts of the discharge.


2020 ◽  
pp. 89-94 ◽  
Author(s):  
Ekaterina V. Lovlya ◽  
Oleg A. Popov

RF inductor power losses of ferrite-free electrode-less low pressure mercury inductively-coupled discharges excited in closed-loop dielectric tube were studied. The modelling was made within the framework of low pressure inductive discharge transformer model for discharge lamps with tubes of 16, 25 and 38 mm inner diam. filled with the mixture of mercury vapour (7.5×10–3 mm Hg) and argon (0.1, 0.3 and 1.0 mm Hg) at RF frequencies of 1, 7; 3.4 and 5.1 MHz and plasma power of (25–500) W. Discharges were excited with the help of the induction coil of 3, 4 and 6 turns placed along the inner perimeter of the closed-loop tube. It was found that the dependence of coil power losses, Pcoil, on the discharge plasma power, Ppl, had the minimum while Pcoil decreased with RF frequency, tube diameter and coil number of turns. The modelling results were found in good qualitative agreement with the experimental data; quantitative discrepancies are believed to be due skin-effect and RF electric field radial inhomogeneity that were not included in discharge modelling.


Sign in / Sign up

Export Citation Format

Share Document