Electric drive based on double-inverter-fed induction machine with minimization of power losses

2010 ◽  
Vol 81 (10) ◽  
pp. 515-520 ◽  
Author(s):  
V. N. Meshcheryakov ◽  
D. V. Bezdenezhnykh
Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 324
Author(s):  
Carmelo Barbagallo ◽  
Santi Agatino Rizzo ◽  
Giacomo Scelba ◽  
Giuseppe Scarcella ◽  
Mario Cacciato

This work presents a step-by-step procedure to estimate the lifetime of discrete SiC power MOSFETs equipping three-phase inverters of electric drives. The stress of each power device when it is subjected to thermal jumps from a few degrees up to about 80 °C was analyzed, starting from the computation of the average power losses and the commitment of the electric drive. A customizable mission profile was considered where, by accounting the working conditions of the drive, the corresponding average power losses and junction temperatures of the SiC MOSFETs composing the inverter can be computed. The tool exploits the Coffin–Manson theory, rainflow counting, and Miner’s rule for the lifetime estimation of the semiconductor power devices. Different operating scenarios were investigated, underlying their impact on the lifetime of SiC MOSFETs devices. The lifetime estimation procedure was realized with the main goal of keeping limited computational efforts, while providing an effective evaluation of the thermal effects. The method enables us to set up any generic mission profile from the electric drive model. This gives us the possibility to compare several operating scenario of the drive and predict the worse operating conditions for power devices. Finally, although the lifetime estimation tool was applied to SiC power MOSFET devices for a general-purpose application, it can be extended to any type of power switch technology.


Author(s):  
M. Gaiceanu ◽  
S. Epure ◽  
C. R. Dache ◽  
S. Ciuta

Abstract The research purpose of the authors is reducing the energy consumption of the main worldwide consumer - the electric motors- by useful utilization of the input energy through the Regenerative Electric Drive System having also the power quality features. The prototype of the electric elevator consists mainly of two trolley: one serve for the active load, and the other as counterweight, gearbox, power converter, induction machine and chain transmission. The elevator is driven by using 4kW three-phase induction machine through AC-AC power converter and has the capacity of 450 kg. The numerical simulation results and the experimental platform are shown.


2007 ◽  
Author(s):  
Henrique B. Goncalves ◽  
Orlando F. Soares ◽  
Armando S. Araujo ◽  
Adriano S. Carvalho

Author(s):  
Svilen Rachev ◽  
Lyubomir Dimitrov ◽  
Konstantinos Karakoulidis ◽  
Ivaylo D. Ivanov ◽  
Cornelia-Victoria Anghel Drugarin

2019 ◽  
Vol 141 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Viktor Yu. Ostrovlyanchik ◽  
◽  
Ivan Yu. Popolzin ◽  
Dmitriy A. Marshev ◽  
Aleksey V. Tolstykh ◽  
...  

Author(s):  
I. Riabov ◽  
S. Sapronova ◽  
V. Tkachenko ◽  
S. Goolak ◽  
R. Keršys

The issue of determining the traction and energy characteristics of electric rolling stock with asynchronous traction drive is considered. It is noted that such rolling stock can work at any point of the traction area, resulting in the need to determine the characteristics of the rolling stock for the entire traction area. The calculation of the characteristics of the traction induction motor, which are the basis for determining the traction and energy characteristics of the electric rolling stock, is considered in detail. A procedure based on the calculation of the replacement circuit of an induction motor is proposed. The calculation of power losses due to higher harmonic voltages and currents is considered. An example of calculation of traction and energy characteristics of an DC electric shunting locomotive with a traction asynchronous electric drive is given.


Sign in / Sign up

Export Citation Format

Share Document