A high selectivity, low insertion loss 60GHz-band on-chip 4-pole band pass filter for millimeter wave CMOS SoC

Author(s):  
Ramesh K. Pokharel ◽  
Xin Liu ◽  
R. Dong ◽  
A.B.A. Dayang ◽  
Haruichi Kanaya ◽  
...  
2021 ◽  
Author(s):  
Wen-Tao Wang ◽  
Hao-Ran Zhu ◽  
Yu-Fa Sun ◽  
Zhi-Xiang Huang ◽  
Xian-Liang Wu

2019 ◽  
Vol 4 (7) ◽  
pp. 28-30
Author(s):  
William Johnson ◽  
Cavin Roger Nunes ◽  
Savio Sebastian Dias ◽  
Siddhi Suresh Parab ◽  
Varsha Shantaram Hatkar

In this paper, a dual band microstrip bandpass filter has been proposed utilizing three edge coupled resonators, interdigital stubs and DGS technique. To enhance the coupling degree, two interdigital coupled feed lines are employed in this filter. The suppressing cell consists of stepped impedance ladder type resonators, which provides a wide stopband. The proposed suppressing cell has clear advantages like low insertion loss in the passband and suitable roll off. The frequency response of the filter looks like a standard dual band band-pass filter. The filter exhibits a dual passband with resonant frequencies at 2.2GHz and 3.45GHz covers LTE1 and LTE22 bands.


Author(s):  
Utpal Dey ◽  
Julio Gonzalez Marin ◽  
Jan Hesselbarth

Abstract Millimeter-wave band-pass filters using spherical dielectric resonators are presented. The dielectric spheres are sandwiched between metal plates and are excited by a simple microstrip line structure on a thin-film circuit board. As such, these filters could also be implemented in the back-end-of-line layers of an integrated circuit. A single resonator, based on a diameter 0.6 mm alumina ceramic sphere, is shown to resonate with high unloaded Q-factor of 750 at 170 GHz. A three-sphere band-pass filter is measured showing <5 dB insertion loss and 0.4% bandwidth at 170 GHz. A concept for mechanically tuning of a two-sphere band-pass filter is demonstrated for a filter operating around 105 GHz. The measured filter shows approximately 5 dB insertion loss and <0.5% bandwidth and its passband can be varied over 3 GHz of frequency, or 3%. Technological challenges are discussed.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 27196-27206
Author(s):  
Naibo Zhang ◽  
Ruiliang Song ◽  
Chunting Wang ◽  
Mingjun Hu ◽  
Qiuquan Guo ◽  
...  

2021 ◽  
Author(s):  
Anciline V ◽  
Maheswari S

The main component widely used in wireless communication system is dual-band band pass filter. This band pass filter is intended in many ways and some are microstrip, waveguide, etc. The dual-band will works in two different frequency ranges which will provide a huge application. This paper compares different microstrip dual-band band pass filter based on the techniques, insertion loss, frequency, etc.


2021 ◽  
Vol 21 (1) ◽  
pp. 1
Author(s):  
Arie Setiawan ◽  
Taufiqqurrachman Taufiqqurrachman ◽  
Adam Kusumah Firdaus ◽  
Fajri Darwis ◽  
Aminuddin Rizal ◽  
...  

Short range radar (SRR) uses the K-band frequency range in its application. The radar requires high-resolution, so the applied frequency is 1 GHz wide. The filter is one of the devices used to ensure only a predetermined frequency is received by the radar system. This device must have a wide operating bandwidth to meet the specification of the radar. In this paper, a band pass filter (BPF) is proposed. It is designed and fabricated on RO4003C substrate using the substrate integrated waveguide (SIW) technique, results in a wide bandwidth at the K-band frequency that centered at 24 GHz. Besides the bandwidth analysis, the analysis of the insertion loss, the return loss, and the dimension are also reported. The simulated results of the bandpass filter are: VSWR of 1.0308, a return loss of -36.9344 dB, and an insertion loss of -0.6695 dB. The measurement results show that the design obtains a VSWR of 2.067, a return loss of -8.136 dB, and an insertion loss of -4.316  dB. While, it is obtained that the bandwidth is reduced by about 50% compared with the simulation. The result differences between simulation and measurement are mainly due to the imperfect fabrication process.


2014 ◽  
Vol 7 (6) ◽  
pp. 655-660 ◽  
Author(s):  
Photos Vryonides ◽  
Symeon Nikolaou ◽  
Sangkil Kim ◽  
Manos M. Tentzeris

A reconfigurable band-pass filter with switchable bandwidth, for wireless applications is demonstrated using a dual-mode microstrip square-loop resonator. The proposed filter has been designed on Rogers RO4003C and achieves switchable bandwidth by changing the length of two tuning stubs with the implementation of two strategically placed p-i-n diodes as switching elements. The filter was designed with a center frequency of 2.4 GHz and the two distinct operation states have bandwidths, 113 MHz (4.8%) with an insertion loss of 1.2 dB and 35 MHz (1.5%) with an insertion loss of 1.5 dB. The physical size of the fabricated reconfigurable filter including the implementation of the DC bias lines is comparable to the size of a conventional filter.


Sign in / Sign up

Export Citation Format

Share Document