Stable Ptychographic Phase Retrieval via Lost Subspace Completion

Author(s):  
Oleh Melnyk ◽  
Anton Forstner ◽  
Felix Krahmer ◽  
Nada Sissouno
Keyword(s):  
Author(s):  
W. Coene ◽  
A. Thust ◽  
M. Op de Beeck ◽  
D. Van Dyck

Compared to conventional electron sources, the use of a highly coherent field-emission gun (FEG) in TEM improves the information resolution considerably. A direct interpretation of this extra information, however, is hampered since amplitude and phase of the electron wave are scrambled in a complicated way upon transfer from the specimen exit plane through the objective lens towards the image plane. In order to make the additional high-resolution information interpretable, a phase retrieval procedure is applied, which yields the aberration-corrected electron wave from a focal series of HRTEM images (Coene et al, 1992).Kirkland (1984) tackled non-linear image reconstruction using a recursive least-squares formalism in which the electron wave is modified stepwise towards the solution which optimally matches the contrast features in the experimental through-focus series. The original algorithm suffers from two major drawbacks : first, the result depends strongly on the quality of the initial guess of the first step, second, the processing time is impractically high.


Author(s):  
Peter P. J. L. Verkoeijen ◽  
Remy M. J. P. Rikers ◽  
Henk G. Schmidt

Abstract. The spacing effect refers to the finding that memory for repeated items improves when the interrepetition interval increases. To explain the spacing effect in free-recall tasks, a two-factor model has been put forward that combines mechanisms of contextual variability and study-phase retrieval (e.g., Raaijmakers, 2003 ; Verkoeijen, Rikers, & Schmidt, 2004 ). An important, yet untested, implication of this model is that free recall of repetitions should follow an inverted u-shaped relationship with interrepetition spacing. To demonstrate the suggested relationship an experiment was conducted. Participants studied a word list, consisting of items repeated at different interrepetition intervals, either under incidental or under intentional learning instructions. Subsequently, participants received a free-recall test. The results revealed an inverted u-shaped relationship between free recall and interrepetition spacing in both the incidental-learning condition and the intentional-learning condition. Moreover, for intentionally learned repetitions, the maximum free-recall performance was located at a longer interrepetition interval than for incidentally learned repetitions. These findings are interpreted in terms of the two-factor model of spacing effects in free-recall tasks.


2007 ◽  
Author(s):  
Peter M. Wessels ◽  
Jonathan Schnader ◽  
Allison Smith ◽  
Christopher Thomas ◽  
Haley Titus

2003 ◽  
Vol 104 ◽  
pp. 557-561 ◽  
Author(s):  
M. R. Howells ◽  
H. Chapman ◽  
S. Hau-Riege ◽  
H. He ◽  
S. Marchesini ◽  
...  

2021 ◽  
Vol 50 ◽  
pp. 16-33
Author(s):  
Meng Huang ◽  
Yi Rong ◽  
Yang Wang ◽  
Zhiqiang Xu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rujia Li ◽  
Liangcai Cao

AbstractPhase retrieval seeks to reconstruct the phase from the measured intensity, which is an ill-posed problem. A phase retrieval problem can be solved with physical constraints by modulating the investigated complex wavefront. Orbital angular momentum has been recently employed as a type of reliable modulation. The topological charge l is robust during propagation when there is atmospheric turbulence. In this work, topological modulation is used to solve the phase retrieval problem. Topological modulation offers an effective dynamic range of intensity constraints for reconstruction. The maximum intensity value of the spectrum is reduced by a factor of 173 under topological modulation when l is 50. The phase is iteratively reconstructed without a priori knowledge. The stagnation problem during the iteration can be avoided using multiple topological modulations.


2021 ◽  
Author(s):  
Zongyu Li ◽  
Kenneth Lange ◽  
Jeffrey A. Fessler
Keyword(s):  

Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Shun Qin ◽  
Wai Kin Chan

Accurate segmented mirror wavefront sensing and control is essential for next-generation large aperture telescope system design. In this paper, a direct tip–tilt and piston error detection technique based on model-based phase retrieval with multiple defocused images is proposed for segmented mirror wavefront sensing. In our technique, the tip–tilt and piston error are represented by a basis consisting of three basic plane functions with respect to the x, y, and z axis so that they can be parameterized by the coefficients of these bases; the coefficients then are solved by a non-linear optimization method with the defocus multi-images. Simulation results show that the proposed technique is capable of measuring high dynamic range wavefront error reaching 7λ, while resulting in high detection accuracy. The algorithm is demonstrated as robust to noise by introducing phase parameterization. In comparison, the proposed tip–tilt and piston error detection approach is much easier to implement than many existing methods, which usually introduce extra sensors and devices, as it is a technique based on multiple images. These characteristics make it promising for the application of wavefront sensing and control in next-generation large aperture telescopes.


Sign in / Sign up

Export Citation Format

Share Document