scholarly journals A Tip–Tilt and Piston Detection Approach for Segmented Telescopes

Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Shun Qin ◽  
Wai Kin Chan

Accurate segmented mirror wavefront sensing and control is essential for next-generation large aperture telescope system design. In this paper, a direct tip–tilt and piston error detection technique based on model-based phase retrieval with multiple defocused images is proposed for segmented mirror wavefront sensing. In our technique, the tip–tilt and piston error are represented by a basis consisting of three basic plane functions with respect to the x, y, and z axis so that they can be parameterized by the coefficients of these bases; the coefficients then are solved by a non-linear optimization method with the defocus multi-images. Simulation results show that the proposed technique is capable of measuring high dynamic range wavefront error reaching 7λ, while resulting in high detection accuracy. The algorithm is demonstrated as robust to noise by introducing phase parameterization. In comparison, the proposed tip–tilt and piston error detection approach is much easier to implement than many existing methods, which usually introduce extra sensors and devices, as it is a technique based on multiple images. These characteristics make it promising for the application of wavefront sensing and control in next-generation large aperture telescopes.

1998 ◽  
Author(s):  
Claudia M. LeBoeuf ◽  
Pamela S. Davila ◽  
David C. Redding ◽  
Armando Morrell ◽  
Andrew E. Lowman ◽  
...  

2000 ◽  
Author(s):  
Charles W. Bowers ◽  
Pamela S. Davila ◽  
Bruce H. Dean ◽  
Brendon D. Perkins ◽  
Mark E. Wilson ◽  
...  

1998 ◽  
Author(s):  
David C. Redding ◽  
Scott A. Basinger ◽  
Andrew E. Lowman ◽  
Andrew Kissil ◽  
Pierre Y. Bely ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rujia Li ◽  
Liangcai Cao

AbstractPhase retrieval seeks to reconstruct the phase from the measured intensity, which is an ill-posed problem. A phase retrieval problem can be solved with physical constraints by modulating the investigated complex wavefront. Orbital angular momentum has been recently employed as a type of reliable modulation. The topological charge l is robust during propagation when there is atmospheric turbulence. In this work, topological modulation is used to solve the phase retrieval problem. Topological modulation offers an effective dynamic range of intensity constraints for reconstruction. The maximum intensity value of the spectrum is reduced by a factor of 173 under topological modulation when l is 50. The phase is iteratively reconstructed without a priori knowledge. The stagnation problem during the iteration can be avoided using multiple topological modulations.


2021 ◽  
Vol 11 (8) ◽  
pp. 3531
Author(s):  
Hesham M. Eraqi ◽  
Karim Soliman ◽  
Dalia Said ◽  
Omar R. Elezaby ◽  
Mohamed N. Moustafa ◽  
...  

Extensive research efforts have been devoted to identify and improve roadway features that impact safety. Maintaining roadway safety features relies on costly manual operations of regular road surveying and data analysis. This paper introduces an automatic roadway safety features detection approach, which harnesses the potential of artificial intelligence (AI) computer vision to make the process more efficient and less costly. Given a front-facing camera and a global positioning system (GPS) sensor, the proposed system automatically evaluates ten roadway safety features. The system is composed of an oriented (or rotated) object detection model, which solves an orientation encoding discontinuity problem to improve detection accuracy, and a rule-based roadway safety evaluation module. To train and validate the proposed model, a fully-annotated dataset for roadway safety features extraction was collected covering 473 km of roads. The proposed method baseline results are found encouraging when compared to the state-of-the-art models. Different oriented object detection strategies are presented and discussed, and the developed model resulted in improving the mean average precision (mAP) by 16.9% when compared with the literature. The roadway safety feature average prediction accuracy is 84.39% and ranges between 91.11% and 63.12%. The introduced model can pervasively enable/disable autonomous driving (AD) based on safety features of the road; and empower connected vehicles (CV) to send and receive estimated safety features, alerting drivers about black spots or relatively less-safe segments or roads.


2021 ◽  
Vol 13 (4) ◽  
pp. 721
Author(s):  
Zhongheng Li ◽  
Fang He ◽  
Haojie Hu ◽  
Fei Wang ◽  
Weizhong Yu

Collaborative representation-based detector (CRD), as the most representative anomaly detection method, has been widely applied in the field of hyperspectral anomaly detection (HAD). However, the sliding dual window of the original CRD introduces high computational complexity. Moreover, most HAD models only consider a single spectral or spatial feature of the hyperspectral image (HSI), which is unhelpful for improving detection accuracy. To solve these problems, in terms of speed and accuracy, we propose a novel anomaly detection approach, named Random Collective Representation-based Detector with Multiple Feature (RCRDMF). This method includes the following steps. This method first extract the different features include spectral feature, Gabor feature, extended multiattribute profile (EMAP) feature, and extended morphological profile (EMP) feature matrix from the HSI image, which enables us to improve the accuracy of HAD by combining the multiple spectral and spatial features. The ensemble and random collaborative representation detector (ERCRD) method is then applied, which can improve the anomaly detection speed. Finally, an adaptive weight approach is proposed to calculate the weight for each feature. Experimental results on six hyperspectral datasets demonstrate that the proposed approach has the superiority over accuracy and speed.


2006 ◽  
Author(s):  
Donald Owens ◽  
Michael Schoen ◽  
Keith Bush

Author(s):  
Sachin S Junnarkar ◽  
Jack Fried ◽  
Sudeepti Southekal ◽  
Jean-Francois Pratte ◽  
Paul O'Connor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document