Estimation of optimal moving target of mobile robots by using a topological map update

Author(s):  
Woo-Jin Lee ◽  
Sang-Seok Yun
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.


Author(s):  
Mehdi Dehghani ◽  
Hamed Kharrati ◽  
Hadi Seyedarabi ◽  
Mahdi Baradarannia

The accumulated error and noise sensitivity are the two common problems of ordinary inertial sensors. An accurate gyroscope is too expensive, which is not normally applicable in low-cost missions of mobile robots. Since the accelerometers are rather cheaper than similar types of gyroscopes, using redundant accelerometers could be considered as an alternative. This mechanism is called gyroscope-free navigation. The article deals with autonomous mobile robot (AMR) navigation based on gyroscope-free method. In this research, the navigation errors of the gyroscope-free method in long-time missions are demonstrated. To compensate the position error, the aid information of low-cost stereo cameras and a topological map of the workspace are employed in the navigation system. After precise sensor calibration, an amendment algorithm is presented to fuse the measurement of gyroscope-free inertial measurement unit (GFIMU) and stereo camera observations. The advantages and comparisons of vision aid navigation and gyroscope-free navigation of mobile robots will be also discussed. The experimental results show the increasing accuracy in vision-aid navigation of mobile robot.


2021 ◽  
Vol 11 (19) ◽  
pp. 9170
Author(s):  
Peng Xu ◽  
Jin Tao ◽  
Minyi Xu ◽  
Guangming Xie

This paper mainly investigates formation control problems for a group of anonymous mobile robots with unknown nonlinear disturbances on a plane, in which all robots can asymptotically converge to any formation patterns without collision, and maintain any required relative distance with neighboring robots. To solve this problem, all robots are modeled as kinematic points and can only acquire information from other robots and their targets. Furthermore, a flexible distributed control law is designed to solve the formation problem while no collisions between any robots can be guaranteed during the whole process. The outstanding feature of the proposed control method is that it can force all mobile robots to form not only uniform circle formations but also non-uniform and non-circular formations with moving target centers. At last, both theoretical analysis and numerical simulations show the feasibility of the proposed control law.


2001 ◽  
Author(s):  
Jenelle Armstrong Piepmeier ◽  
Peter A. Morgan

Abstract An quasi-Newton method with Jacobian estimation is used to control a mobile robot utilizing visual feedback. The method is uncalibrated, requiring no camera calibration or known robot kinematics. Given a proper task configuration, the robot can be controlled such that it follows a moving target. This paper investigates the appropriate task configurations that result in a controllable system.


Sign in / Sign up

Export Citation Format

Share Document