The Correcting Approach of Gyroscope-Free Inertial Navigation Based on the Applicable Topological Map

Author(s):  
Mehdi Dehghani ◽  
Hamed Kharrati ◽  
Hadi Seyedarabi ◽  
Mahdi Baradarannia

The accumulated error and noise sensitivity are the two common problems of ordinary inertial sensors. An accurate gyroscope is too expensive, which is not normally applicable in low-cost missions of mobile robots. Since the accelerometers are rather cheaper than similar types of gyroscopes, using redundant accelerometers could be considered as an alternative. This mechanism is called gyroscope-free navigation. The article deals with autonomous mobile robot (AMR) navigation based on gyroscope-free method. In this research, the navigation errors of the gyroscope-free method in long-time missions are demonstrated. To compensate the position error, the aid information of low-cost stereo cameras and a topological map of the workspace are employed in the navigation system. After precise sensor calibration, an amendment algorithm is presented to fuse the measurement of gyroscope-free inertial measurement unit (GFIMU) and stereo camera observations. The advantages and comparisons of vision aid navigation and gyroscope-free navigation of mobile robots will be also discussed. The experimental results show the increasing accuracy in vision-aid navigation of mobile robot.

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1773 ◽  
Author(s):  
Mingjing Gao ◽  
Min Yu ◽  
Hang Guo ◽  
Yuan Xu

Multi-sensor integrated navigation technology has been applied to the indoor navigation and positioning of robots. For the problems of a low navigation accuracy and error accumulation, for mobile robots with a single sensor, an indoor mobile robot positioning method based on a visual and inertial sensor combination is presented in this paper. First, the visual sensor (Kinect) is used to obtain the color image and the depth image, and feature matching is performed by the improved scale-invariant feature transform (SIFT) algorithm. Then, the absolute orientation algorithm is used to calculate the rotation matrix and translation vector of a robot in two consecutive frames of images. An inertial measurement unit (IMU) has the advantages of high frequency updating and rapid, accurate positioning, and can compensate for the Kinect speed and lack of precision. Three-dimensional data, such as acceleration, angular velocity, magnetic field strength, and temperature data, can be obtained in real-time with an IMU. The data obtained by the visual sensor is loosely combined with that obtained by the IMU, that is, the differences in the positions and attitudes of the two sensor outputs are optimally combined by the adaptive fade-out extended Kalman filter to estimate the errors. Finally, several experiments show that this method can significantly improve the accuracy of the indoor positioning of the mobile robots based on the visual and inertial sensors.


Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Majid Yekkehfallah ◽  
Ming Yang ◽  
Zhiao Cai ◽  
Liang Li ◽  
Chuanxiang Wang

SUMMARY Localization based on visual natural landmarks is one of the state-of-the-art localization methods for automated vehicles that is, however, limited in fast motion and low-texture environments, which can lead to failure. This paper proposes an approach to solve these limitations with an extended Kalman filter (EKF) based on a state estimation algorithm that fuses information from a low-cost MEMS Inertial Measurement Unit and a Time-of-Flight camera. We demonstrate our results in an indoor environment. We show that the proposed approach does not require any global reflective landmark for localization and is fast, accurate, and easy to use with mobile robots.


Author(s):  
Jacques Waldmann

Navigation in autonomous vehicles involves integrating measurements from on-board inertial sensors and external data collected by various sensors. In this paper, the computer-frame velocity error model is augmented with a random constant model of accelerometer bias and rate-gyro drift for use in a Kalman filter-based fusion of a low-cost rotating inertial navigation system (INS) with external position and velocity measurements. The impact of model mismatch and maneuvers on the estimation of misalignment and inertial measurement unit (IMU) error is investigated. Previously, the literature focused on analyzing the stripped observability matrix that results from applying piece-wise constant acceleration segments to a stabilized, gimbaled INS to determine the accuracy of misalignment, accelerometer bias, and rate-gyro drift estimation. However, its validation via covariance analysis neglected model mismatch. Here, a vertically undamped, three channel INS with a rotating IMU with respect to the host vehicle is simulated. Such IMU rotation does not require the accurate mechanism of a gimbaled INS (GINS) and obviates the need to maneuver away from the desired trajectory during in-flight alignment (IFA) with a strapdown IMU. In comparison with a stationary GINS at a known location, IMU rotation enhances estimation of accelerometer bias, and partially improves estimation of rate-gyro drift and misalignment. Finally, combining IMU rotation with distinct acceleration segments yields full observability, thus significantly enhancing estimation of rate-gyro drift and misalignment.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 74 ◽  
Author(s):  
Ariel Larey ◽  
Eliel Aknin ◽  
Itzik Klein

An inertial measurement unit (IMU) typically has three accelerometers and three gyroscopes. The output of those inertial sensors is used by an inertial navigation system to calculate the navigation solution–position, velocity and attitude. Since the sensor measurements contain noise, the navigation solution drifts over time. When considering low cost sensors, multiple IMUs can be used to improve the performance of a single unit. In this paper, we describe our designed 32 multi-IMU (MIMU) architecture and present experimental results using this system. To analyze the sensory data, a dedicated software tool, capable of addressing MIMUs inputs, was developed. Using the MIMU hardware and software tool we examined and evaluated the MIMUs for: (1) navigation solution accuracy (2) sensor outlier rejection (3) stationary calibration performance (4) coarse alignment accuracy and (5) the effect of different MIMUs locations in the architecture. Our experimental results show that 32 IMUs obtained better performance than a single IMU for all testcases examined. In addition, we show that performance was improved gradually as the number of IMUs was increased in the architecture.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 88 ◽  
Author(s):  
Ambra Cesareo ◽  
Ylenia Previtali ◽  
Emilia Biffi ◽  
Andrea Aliverti

Breathing frequency (fB) is an important vital sign that—if appropriately monitored—may help to predict clinical adverse events. Inertial sensors open the door to the development of low-cost, wearable, and easy-to-use breathing-monitoring systems. The present paper proposes a new posture-independent processing algorithm for breath-by-breath extraction of breathing temporal parameters from chest-wall inclination change signals measured using inertial measurement units. An important step of the processing algorithm is dimension reduction (DR) that allows the extraction of a single respiratory signal starting from 4-component quaternion data. Three different DR methods are proposed and compared in terms of accuracy of breathing temporal parameter estimation, in a group of healthy subjects, considering different breathing patterns and different postures; optoelectronic plethysmography was used as reference system. In this study, we found that the method based on PCA-fusion of the four quaternion components provided the best fB estimation performance in terms of mean absolute errors (<2 breaths/min), correlation (r > 0.963) and Bland–Altman Analysis, outperforming the other two methods, based on the selection of a single quaternion component, identified on the basis of spectral analysis; particularly, in supine position, results provided by PCA-based method were even better than those obtained with the ideal quaternion component, determined a posteriori as the one providing the minimum estimation error. The proposed algorithm and system were able to successfully reconstruct the respiration-induced movement, and to accurately determine the respiratory rate in an automatic, position-independent manner.


2020 ◽  
Vol 58 (1) ◽  
pp. 57-75
Author(s):  
Mario Kučić ◽  
Marko Valčić

Typically, ships are designed for open sea navigation and thus research of autonomous ships is mostly done for that particular area. This paper explores the possibility of using low-cost sensors for localization inside the small navigation area. The localization system is based on the technology used for developing autonomous cars. The main part of the system is visual odometry using stereo cameras fused with Inertial Measurement Unit (IMU) data coupled with Kalman and particle filters to get decimetre level accuracy inside a basin for different surface conditions. The visual odometry uses cropped frames for stereo cameras and Good features to track algorithm for extracting features to get depths for each feature that is used for estimation of ship model movement. Experimental results showed that the proposed system could localize itself within a decimetre accuracy implying that there is a real possibility for ships in using visual odometry for autonomous navigation on narrow waterways, which can have a significant impact on future transportation.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2954 ◽  
Author(s):  
Ralf Ziebold ◽  
Daniel Medina ◽  
Michailas Romanovas ◽  
Christoph Lass ◽  
Stefan Gewies

Currently Global Navigation Satellite Systems (GNSSs) are the primary source for the determination of absolute position, navigation, and time (PNT) for merchant vessel navigation. Nevertheless, the performance of GNSSs can strongly degrade due to space weather events, jamming, and spoofing. Especially the increasing availability and adoption of low cost jammers lead to the question of how a continuous provision of PNT data can be realized in the vicinity of these devices. In general, three possible solutions for that challenge can be seen: (i) a jamming-resistant GNSS receiver; (ii) the usage of a terrestrial backup system; or (iii) the integration of GNSS with other onboard navigation sensors such as a speed log, a gyrocompass, and inertial sensors (inertial measurement unit—IMU). The present paper focuses on the third option by augmenting a classical IMU/GNSS sensor fusion scheme with a Doppler velocity log. Although the benefits of integrated IMU/GNSS navigation system have been already demonstrated for marine applications, a performance evaluation of such a multi-sensor system under real jamming conditions on a vessel seems to be still missing. The paper evaluates both loosely and tightly coupled fusion strategies implemented using an unscented Kalman filter (UKF). The performance of the proposed scheme is evaluated using the civilian maritime jamming testbed in the Baltic Sea.


2017 ◽  
Vol 870 ◽  
pp. 79-84
Author(s):  
Zhen Xian Fu ◽  
Guang Ying Zhang ◽  
Yu Rong Lin ◽  
Yang Liu

Rapid progress in Micro-Electromechanical System (MEMS) technique is making inertial sensors increasingly miniaturized, enabling it to be widely applied in people’s everyday life. Recent years, research and development of wireless input device based on MEMS inertial measurement unit (IMU) is receiving more and more attention. In this paper, a survey is made of the recent research on inertial pens based on MEMS-IMU. First, the advantage of IMU-based input is discussed, with comparison with other types of input systems. Then, based on the operation of an inertial pen, which can be roughly divided into four stages: motion sensing, error containment, feature extraction and recognition, various approaches employed to address the challenges facing each stage are introduced. Finally, while discussing the future prospect of the IMU-based input systems, it is suggested that the methods of autonomous and portable calibration of inertial sensor errors be further explored. The low-cost feature of an inertial pen makes it desirable that its calibration be carried out independently, rapidly, and portably. Meanwhile, some unique features of the operational environment of an inertial pen make it possible to simplify its error propagation model and expedite its calibration, making the technique more practically viable.


2017 ◽  
Vol 24 (s3) ◽  
pp. 110-115
Author(s):  
Changsong Yang ◽  
Qi Wang

Abstract Large errors of low-cost MEMS inertial measurement unit (MIMU) lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS). This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.


Sign in / Sign up

Export Citation Format

Share Document